МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева» (Астраханский государственный университет им. В. Н. Татищева)

СОГЛАСОВАНО	УТВЕРЖДЕНО
Руководитель ОПОП	Заведующий кафедрой ХМ
Носачев С.Б.	Джигола Л.А
«04» апреля 2024 г.	«04» апреля 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Квантовая экологическая химия»

Составитель	Золотарева Н.В., к.т.н., доцент
Correspondence	доцент кафедры ХМ
Согласовано с работодателями:	Фидурова С.Н., заместитель начальника отдела физико-химических исследований инженерно-
	технических исследовании инженерно- технического центра ООО «Газпром добыча
	Астрахань»
	Лукин Н.В., директор МБОУ г. Астрахани
	«Лицей №2 »
Направление подготовки /	04.05.01 ФУНДАМЕНТАЛЬНАЯ И
специальность	ПРИКЛАДНАЯ ХИМИЯ
Направленность (профиль) ОПОП	
Квалификация (степень)	Химик. Преподаватель химии
Форма обучения	очная
Год приема	2024
Курс	2
Семестр	4

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- **1.1.** Целью освоения дисциплины "Квантовая экологическая химия" является знакомство студентов с теоретическими основами квантовой экологической химии и ее возможностями для решения экологических проблем химии.
- 1.2. Задачи освоения дисциплины "Квантовая экологическая химия": знакомство студентов с ключевыми понятиями и постулатами в квантовой механике, существующими методами решения базового стационарного уравнения Шредингера для одно- и многоэлектронных систем, схемами, алгоритмами вычисления структурных и спектроскопических характеристик, методами предсказания реакционной способности молекул, вычислительными квантово-химическими программами.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

2.1. Учебная дисциплина "Квантовая экологическая химия" относится к обязательной части дисциплин (Б.1.В.04), формируемой участниками образовательных отношений и осваивается в 5 семестре. Дисциплина встраивается в структуру ОПОП как с точки зрения преемственности содержания, так и с точки зрения непрерывности процесса формирования компетенций выпускника. «Входные» знания, умения и опыт обучающегося, необходимые для при освоении дисциплины «Квантовая экологическая химия», приобретенные в результате освоения предшествующих дисциплин связаны со знанием теоретических основ высшей математики, физики и информатики.

2.2. Для изучения данной учебной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими учебными дисциплинами:

- «Высшая математика»

Знания: представления о функциях одной и нескольких переменных;

статистическая обработка данных;

Умения: решение систем линейных и нелинейных уравнений; построение корреляционных зависимостей;

Навыки: осуществлять интегрирование и дифференцирование функций; решения дифференциальных уравнений; обработка экспериментальных данных.

- «Физика»

Знания: основные физические свойства света, волны; законы оптики; законов классической механики;

Умения: решать фундаментальные задачи;

Навыки: обработки данных, формирования выводов, постановка экспериментов.

- «Информатика»

Знания: представлениями об устройстве компьютера; о функционировании системного и прикладного программного обеспечения;

Умения: работать с прикладным программным обеспечением;

Навыки: работы с пользовательскими программными комплексами.

2.3. Последующие учебные дисциплины и (или) практики, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной:

- -Квантовая механика и квантовая химия:
- -Строение вещества;
- -Кристаллохимия;
- -Органическая химия;
- -Физическая химия.

Данный курс является базой для изучения активности и реакционной способности газовполлютантов техногенного происхождения, применения вычислительных методов в прогнозировании свойств исходных веществ и продуктов взаимодействий (подготовка ВКР).

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс освоения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОПОП ВО по данному направлению подготовки: б) профессиональных (ПК):

«ПК-2» - Способен выбирать технические средства и методы испытаний (исследований) для решения поставленных задач химической направленности.

Таблица 1. Декомпозиция результатов обучения

	Код и	Планируемые результ	гаты обучения по ди	сциплине (модулю)
Код компетенции	наименование индикатора достижения компетенции	Знать (1)	Уметь (2)	Владеть (3)
	ПК-2.1 Планирует отдельные стадии исследования при наличии общего плана работы	Использует базовые знания в квантовой теории при описании поведения атомов в молекуле и прогнозе реакционной способности	использовать терминологию и основные понятия направлений	Интерпретирует результаты химических наблюдений сиспользованием физических законов и представлений
ПК-2	ПК-2.2 Выбирает технические средства и методы испытаний (из набора имеющихся) для решения поставленных задач	методы, алгоритмы постановки вычислительного эксперимента, а также способы обработки результатов.	анализировать результаты экспериментов, наблюдений, измерений, а также результаты расчетов свойств веществ и материалов.	способами систематизации и анализа результатов наблюдений, измерений, а также результаты расчетов свойств веществ и материалов.
	ПК-2.3 Проводит отбор, идентификацию образцов, подготовку технической документации на образцы, устанавливает нормативные значения контролируемых показателей	Использует базовые знания в области математики и физики при планировании работ химической направленности; основы квантовой теории для решения экологических задач, связанных с моделированием процессов и изучением свойств веществ, а также,	Обрабатывает данные с использованием стандартных способов аппроксимации численных характеристик; использовать математический аппарат, алгоритмы расчетов квантовой механики для	Интерпретирует результаты химических наблюдений с использованием физических законов и представлений; приемами квантовой механики, методами, алгоритмами математического анализа при

	Код и	Планируемые результ	гаты обучения по ди	сциплине (модулю)
Код компетенции	наименование индикатора достижения компетенции	Знать (1)	Уметь (2)	Владеть (3)
		квантово-	процессов и	схем
		химических	изучения свойств	межмолекулярных
		программных	веществ, а также,	взаимодействий и
		комплексов для	использовать	интерпретации
		решения	квантово-	результатов
		естественнонаучных	химические	расчета, а также,
		задач в разделах	программы,	алгоритмами,
		органической,	алгоритмы	схемами
		биоорганической и	расчетов для	выполнения
		физической химии.	построения	стандартных
			модельных схем в	процедур при
			разделах	построении
			органической,	модельных схем с
			биоорганической	использованием
			и физической	компьютерных
			химии и	квантово-
			интерпретировать	химических
			полученные	программ.
			результаты	
			расчетов.	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины в соответствии с учебным планом составляет 4 зачетных единицы 144 часа), семестр -4.

Трудоемкость отдельных видов учебной работы студентов очной формы обучения приведена в таблице 2.1.

Таблица 2.1. Трудоемкость отдельных видов учебной работы по очной форме обучения

Вид учебной и внеучебной работы	для очной формы обучения
Объем дисциплины в зачетных единицах	4
Объем дисциплины в академических часах	144
Контактная работа обучающихся с преподавателем (всего), в том числе (час.):	36
- занятия лекционного типа, в том числе:	36
- практическая подготовка (если предусмотрена)	-
- занятия семинарского типа (семинары, практические, лабораторные),	36
в том числе:	36
- практическая подготовка (если предусмотрена)	30
- консультация (предэкзаменационная)	3,25
- промежуточная аттестация по дисциплине	-
Самостоятельная работа обучающихся (час.)	32,75
Форма промежуточной аттестации обучающегося (зачет/экзамен), семестр(ы)	экзамен - 4 семестр

Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий и самостоятельной работы, для каждой формы обучения представлено в таблице 2.2.

Таблица 2.2. Структура и содержание дисциплины (модуля)

таолица 2.2. Структу	ура и содержание дисциплины (модуля) Контактная работа, час.						Форма текущего			
D		Л		I3		[P			COB	контроля успеваемости, форма промежуточной аттестации [по семестрам]
Раздел, тема дисциплины (модуля)	Л	В Т.Ч. ПП	ПЗ	В Т.Ч. ПП	ЛР	в т.ч. ПП	КР/ КП	СР, час.	Итого часов	
Семестр 4.										
Критерии воздействия химических веществ на окружающую среду	2		4		-			4	10	Круглый стол
Общие вопросы токсикологии. Воздействие веществ на экосистемы	2		4		-			4	10	Вопрос - Ответ
Принципы оценки токсичности веществ	4		2		-			4	10	Работа над презентациями
Органические и неорганические токсиканты	4		2		4			4	14	Задачи для самоподготовки
Программное квантово-химическое обеспечение	4		4		4			4	16	Вопрос - Ответ
Компьютерная реализация квантово- химических методов	4		4		4			4	16	Выполнение вычислительного эксперимента (з.е. 1)
Химическая реакционная способность молекул	4		4		6			2	16	Выполнение вычислительного эксперимента (з.е.2)
Квантово-химическое описание реакций	4		4		6			2	16	Работа над презентациями
Проведение диагностики молекул с использованием квантово-химических методов исследования	4		4		6			2	16	Индивидуальные задания вычислительного практикума (з.е. 3)
Моделирование межмолекулярных взаимодействий	4		4		6			2,75	16,75	Индивидуальные задания вычислительного практикума (з.е. 4)
Консультации									3,25	
Контроль промежуточной аттестации									-	Экзамен
ИТОГО за семестр:	36 36		36 36		36 36			32,75 32,75	140,75 144	
Итого за весь период	30	<u> </u>	30	<u> </u>	30			34,13	144	

Примечание: Π – лекция; Π 3 – практическое занятие, семинар; Π Р – лабораторная работа; Π П – практическая подготовка; Π КР / Π – курсовая работа / курсовой проект; Π – самостоятельная работа

Таблица 3. Матрица соотнесения разделов, тем учебной дисциплины (модуля)

и формируемых компетенций

и формируемых компетенции			
Dearway rows was an array	Кол-во	Код компетенции	Общее количество
Разделы, темы дисциплины	часов	ПК-2	компетенций
Критерии воздействия химических веществ на	10	1	1
окружающую среду	10	+	1
Общие вопросы токсикологии. Воздействие	10	+	1
веществ на экосистемы	10	+	1
Принципы оценки токсичности веществ	10	+	1
Органические и неорганические токсиканты	14	+	1
Программное квантово-химическое	16	+	1
обеспечение	10	+	1
Компьютерная реализация квантово-	16	+	1
химических методов	10	Т	1
Химическая реакционная способность	16	+	1
молекул	10	Т	1
Квантово-химическое описание реакций	16	+	1
Проведение диагностики молекул с			
использованием квантово-химических	16	+	1
методов исследования			
Моделирование межмолекулярных	16,75	+	1
взаимодействий	10,73	+	1
Итого	140,75		1

Краткое содержание каждой темы дисциплины

РАЗДЕЛ 1. Введение в экологическую химию

§1.1 Концепции и критерии воздействия химических веществ на окружающую среду

Экотоксикология, определение и задачи. Молекулярно-биологическое воздействие. Мутагенность и канцерогенность. Основные критерии возникновения мутагенеза (канцерогенеза) под действием химических веществ. Воздействие на поведение организмов. Модели оценки токсических воздействий.

§1.2 Общие вопросы токсикологии

Клеточные мембраны. Транспорт веществ. Модель элементарной мембраны. Жидкостномозаичная модель. Энергетика пассивного и активного транспорта. Перенос веществ через биологические мембраны с помощью переносчиков. Основные структурные особенности ионофоров. Катионная селективность ионофоров. Динамика комплексообразования с ионофорами. Антибиотики-каналообразователи. Основы действия токсикантов на биологические структуры.

§1.3 Токсическое воздействие веществ на экосистемы

Химическое загрязнение атмосферы. Техногенные выбросы в атмосферу. Озон и озоновый слой в атмосфере. Взвешенные в воздухе токсичные частицы. Химическое загрязнение природных вод. Неорганические загрязнители. Органические загрязнители. Сброс отходов в море с целью захоронения (дампинг). Загрязнение почвы. Кислые атмосферные загрязнители. Связь между строением веществ и их токсичностью. Действие токсикантов на ферментные системы. Прямое воздействие токсикантов на ферменты. Блокирование атомов металлов и цитохромов. Блокирование тиоловых и дитиоловых групп. Воздействие по типу «летального синтеза».

Блокирование синтеза белка. Повреждение желез внутренней секреции. Механизмы гемолиза. Блокирование сульфгидрильных групп. Ферментативные нарушения в эритроцитах. Нарушение систем, регулирующих уровень пероксида водорода в эритроцитах. Примахиновый гемолиз. Механизмы метгемоглобинообразования. Воздействие фенолов на живые организмы. Биохимические основы действия фенолов на структурные элементы живых организмов.

§1.4 Принципы оценки токсичности веществ

Критерии и концепции оценки вещества. Экспозиция (доза воздействия веществ). Биологическое воздействие химических продуктов. Оценки опасности и риска. Оценка химических продуктов с помощью экотоксикологического профильного анализа.

§1.5 Органические и неорганические токсиканты

Поступление в окружающую среду и содержание токсикантов в природных средах. Поведение в окружающей среде и модельных системах. Токсикологические исследования. Нормы и дозы при различном поступлении в организм. Биологическое действие. Зависимость кожнораздражающего действия токсикантов и его пороговая концентрация. Действие токсикантов на органы и системы органов. Органические соединения: бромбифенилы, винилхлорид, 1,1-дихлорэтилен, диоксины и родственные им соединения, микотоксины и его производные, изопропаноламины и др.; органические красители; поверхностно-активные вещества и их композиты, синтетические моющие средства; витамины; терпены, различные группы антибиотиков (пенициллин, тетрациклин, блеомицин) и др. Неорганические соединения: оксиды серы, азота, сероводород, цианиды, окислители и др.

РАЗДЕЛ 2. Реализация экологических задач современными квантово-химическими метолами

§2.1 Программное квантово-химическое обеспечение

Обзор современного программного обеспечения квантово-химических расчетов, программные MaSK. комплексы GAMESS, MOPAC, Пользовательский интерфейс программ. Редактирование структурных химических формул в программах визуализаторах. Обзор важнейших элементов главной панели, контрольной панели. Создание 2D и 3D эскиза молекулы. Редактирование связей и атомов. Элементы управления молекулами (перемещение, вращение, увеличение, уменьшение) относительно координатной оси. Редактирование и анализ геометрии трехмерных моделей молекул. Визуализация молекулярных структур. Создание и редактирование молекулярных моделей. Определение геометрических молекулярной модели. Измерение связей, углов, торсионных углов и несвязанных атомов. Определение характеристик атомов. Использование собственных настроек параметров свойств.

§2.2 Компьютерная реализация квантово-химических методов расчета

Квантово-химический расчёт. МОРАС для проведения полуэмпирических расчётов различных молекул. Запуск программы. Расшифровка результатов расчёта. Составление z-матрицы молекул. Оптимизация геометрии различных молекул полуэмпирическими методами (AM1, PM3, PM7). Оценка точности зарядового распределения полуэмпирическими методами на основании расчётов дипольного момента. Оценка центров нуклеофильной и электрофильной атаки молекул. Использование неэмпирических методов (HF/STO-3G, HF/6-31G*, MP2, DFT/B3LYP и др.) для исследования геометрических параметров молекулы.

§2.3 Современные квантово-химические методы

Общая характеристика методов квантовой химии. Неэмпирическая квантовая химия. Базисные функции для неэмпирических расчетов. Методы теории функционала плотности. Полуэмпирические методы расчета. Основные требования к полуэмпирическим методам. Принципы параметризации полуэмпирических методов. Расширенный метод Хюккеля. Метод молекулярных орбиталей Хюккеля. Точность квантово-химических расчетов химических свойств молекул.

РАЗДЕЛ 3. Корреляционные зависимости между электронной структурой и реакционной способностью рассматриваемого объекта

§3.1 Химическая реакционная способность молекул

Статический метод Коулсона и Лонге-Хиггинса. Метод граничных молекулярных орбиталей Фукуи. Динамический метод. Приближение Уэланда для переходного состояния реакции. Метод оценки энергии локализации Лонге-Хиггинса и Дьюара. Индексы реакционной способности. Правило Вудворда-Хоффмана и его применение для оценки реакционной способности органических соединений.

§3.2 Квантово-химическое описание реакций

Химические реакции в газовой фазе. Поверхность потенциальной энергии химической реакции. Теория переходного состояния. Расчет поверхности потенциальной энергии химической реакции. Особые точки равновесных и переходных состояний. Путь химической реакции, координата реакции. Квантово-химическое описание химических реакций в жидкой и твердой фазе. Молекулярный электростатический потенциал. Абсолютная жесткость и абсолютная мягкость молекулярных систем. Энергия диссоциации химической связи в молекулярной системе. Орбитальные модели взаимодействия молекул с поверхностью. Хемосорбция. Квантовая химия каталитических реакций.

РАЗДЕЛ 4. Моделирование процессов взаимодействия химических веществ обиологическими системами

§4.1 Проведение диагностики молекул с использованием квантово-химических методов исследования

Составление молекулярных диаграмм с применением метода молекулярных орбиталей для несложных молекул и предсказания их реакционной способности. Нахождение порядка связи, индекса свободной валентности, распределения зарядов ряда химических соединений. Проведение расчетов с помощью программных квантово-химических методов исследования. Сравнительная характеристика параметров, рассчитанных с помощью метода ЛКАО и программным методом.

§4.2 Моделирование межмолекулярных взаимодействий

Анализ энергетических и геометрических отклонений в параметрах структур, в зависимости от вида межмолекулярного взаимодействия, на примере систем (диоксид серы, сероводород, фенол, аммиак, оксиды азота) — модельные биологические мембраны (углеводы, п-пептиды, фосфолипиды и др.). Низкомолекулярные фрагменты в качестве моделей белковых систем: природные трипептиды, тетрапептиды, пентапептиды и др. Глутатион. Моделирование контактных межмолекулярных взаимодействий токсикантов (органического и неорганического происхождения) на модельных структурных компонентах клеточной мембраны. Сравнение результатов теоретических исследований с экспериментальными или справочными данными.

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕПОДАВАНИЮ И ОСВОЕНИЮ ДИСЦИПЛИНЫ

5.1. Указания для преподавателей по организации и проведению учебных занятий по дисциплине

При подготовке к практическим и лабораторным занятиям студентам отводится время на самостоятельную работу в объеме 32,75 часов, которая включает изучение материалов лекционного курса, ознакомление с материалами, изложенными в учебниках и иных источниках информации, включая поисковую работу в интернете, выполнение домашних (задач для самоконтроля) и тестовых заданий. Полезно использовать образовательный портал электронное образование Астраханского государственного университета им. В.Н. Татищева (http://moodle.asu.edu.ru/) на котором периодически обновляется информация о текущих заданиях и присутствует необходимый материал по курсу учебной дисциплины и/или

использовать для этих целей общий электронный адрес группы. Также, рекомендуется к ознакомлению курс открытого доступа на образовательной платформе Stepik: «Молекулы и модели: теория и практика» https://stepik.org/course/143494. По данной дисциплине предусмотрены лекции согласно ОПОП ВО.

5.2. Указания для обучающихся по освоению дисциплины

Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине:

- 1. Исидоров В.А. Экологическая химия: учеб. пособ. для вузов ... спец. "Охрана окружающей среды и рациональное использование природных ресурсов". СПб.: Химиздат, 2001. 304 с.
- 2. Золотарева Н.В. Основы квантовой механики в вопросах и задачах. Модельные примеры квантовой химии: Учебно-методическое пособие. Астрахань: Издатель: Сорокин Роман Васильевич, 2020. 58 с. (Электронный вариант https://biblio.asu.edu.ru/)
- 3. Золотарева Н.В. Молекулы и модели: теория и практика https://stepik.org/course/143494
- 4. Барановский В.И. Квантовая механика и квантовая химия: учеб. пособ. для студентов вузов ... по химическим специальностям. М.: Академия, 2008. 384 с.
- 5. Фелленберг Γ . Загрязнение природной среды. Введение в экологическую химию М.: Мир, 1997. 232 с.
- 6. Ложниченко О.В. Экологическая химия: учебное пособие для вузов / О.В. Ложниченко, И.В. Волкова, В.Ф. Зайцев М.: Академия, 2008. 272 с.
- 7. Колок А., Современные яды: Дозы, действие, последствия [Электронный ресурс] / Колок А. М.: Альпина Паблишер, 2017.-215с. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785961458688.html
- взаимодействия. Каплан И.Г. Межмолекулярные Физическая интерпретация, компьютерные расчеты и модельные потенциалы - М.: Лаборатория знаний, 2017. - 397 с. -Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785001015031.html
- 9. Калетина Н.И. Токсикологическая химия. Метаболизм и анализ токсикантов М.: ГЭОТАР-Медиа, 2008. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785970406137.html
- 10. Калетина Н.И. Токсикологическая химия. Ситуационные задачи и упражнения / Н. И. Калетина М.: ГЭОТАР-Медиа, 2007. 352 с. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785970405406.html
- 11. Колок А. Современные яды: Дозы, действие, последствия / Колок А. М.: Альпина Паблишер, 2017. 215 с. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785961458688.html
- 12. Плетенёва Т.В., Токсикологическая химия [Электронный ресурс] / "Плетенева Т.В., Сыроешкин А.В., Максимова Т.В.; Под ред. Т.В. Плетенёвой" М.: ГЭОТАР-Медиа, 2013.-512c. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785970426357.html
- 13. С.А. Еремин и др. Токсикологическая химия. Аналитическая токсикология: учебник / Еремин С.А., Калетин Г.И., Калетина Н.И. и др. М.: ГЭОТАР-Медиа, 2010. 752 с. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785970415375.html

Таблица 4. Содержание самостоятельной работы обучающихся

Вопросы, выносимые на самостоятельн	ое изучение	Кол-во часов	Форма работы
Критерии воздействия химических окружающую среду Мутагенность и канцерогенность. Осно возникновения мутагенеза и канцерогенеза		4	Круглый стол

VIII HIII OOMIN POINOOTE		
химических веществ		
Общие вопросы токсикологии. Воздействие веществ на		
экосистемы Модель элементарной мембраны. Жидкостно-мозаичная модель. Энергетика пассивного и активного транспорта. Перенос веществ через биологические мембраны с помощью переносчиков. Основные структурные особенности ионофоров. Связь между строением веществ и их токсичностью. Действие токсикантов на ферментные системы. Прямое воздействие на ферменты. Воздействие фенолов на живые организмы. Биохимические основы действия фенолов на структурные элементы живых организмов. Поступление в окружающую среду и содержание токсикантов в природных средах. Токсикологические исследования.	4	Вопрос - Ответ
Принципы оценки токсичности веществ		
Критерии и концепции оценки вещества. Оценки опасности и риска. Оценка химических продуктов с помощью экотоксикологического профильного анализа.	4	Работа над презентациями
Органические и неорганические токсиканты		
Содержание токсикантов в природных средах. Поведение в окружающей среде и модельных системах. Биологическое действие. Зависимость кожно-раздражающего действия токсикантов и его пороговая концентрация. Действие токсикантов на органы и системы органов.	4	Задачи для самоподготовки
Программное квантово-химическое обеспечение		
Современное программное обеспечение квантово- химических и молекулярно-динамических расчетов. Определение геометрических параметров молекулярной модели. Измерение связей, углов, торсионных углов и несвязанных атомов. Определение характеристик атомов.	4	Вопрос - Ответ
Компьютерная реализация квантово-химических		
методов Программы для проведения полуэмпирических расчётов различных молекул, запуск. Расшифровка результатов расчёта. Составление z-матрицы молекул. Оптимизация геометрии различных молекул.	4	Выполнение вычислительного эксперимента (з.е. 1)
Химическая реакционная способность молекул		
Базисные функции для неэмпирических расчетов. Методы теории функционала плотности. Полуэмпирические методы расчета. Основные требования к полуэмпирическим методам. Принципы параметризации полуэмпирических методов. Метод молекулярных орбиталей Хюккеля. Расширенный метод Хюккеля. Точность квантовохимических расчетов химических свойств молекул.	2	Выполнение вычислительного эксперимента (з.е.2)
Квантово-химическое описание реакций		
Статический метод Коулсона и Лонге-Хиггинса. Метод граничных молекулярных орбиталей Фукуи. Динамический метод. Приближение Уэланда для переходного состояния реакции. Метод оценки энергии локализации Лонге-Хиггинса и Дьюара. Правило Вудворда-Хоффмана и его применение для оценки реакционной способности	2	Работа над презентациями

соединений.		
Проведение диагностики молекул с использованием		
квантово-химических методов исследования		
Поверхность потенциальной энергии химической реакции.		Индивидуальные
Расчет поверхности потенциальной энергии химической		задания
реакции. Особые точки равновесных и переходных	2	вычислительного
состояний. Квантово-химическое описание химических		практикума (з.е. 3)
реакций в жидкой и твердой фазе. Молекулярный		практикума (3.6. 3)
электростатический потенциал. Абсолютная жесткость и		
абсолютная мягкость молекулярных систем.		
Моделирование межмолекулярных взаимодействий		
Анализ энергетических и геометрических отклонений в		Индивидуальные
параметрах структур, в зависимости от вида	2,75	задания
межмолекулярного взаимодействия. Моделирование	2,73	вычислительного
взаимодействия токсикантов на структурных элементах		практикума (з.е. 4)
клеточной мембраны.		

5.3. Виды и формы письменных работ, предусмотренных при освоении дисциплины, выполняемые обучающимися самостоятельно

Необходимым условием успешного усвоения дисциплины является систематический текущий контроль знаний студентов в течение всего семестра, который осуществляется в форме мини-опросов по основным модулям курса при отчете вычислительного практикума в течение всего семестра. При необходимости студентами могут быть подготовлены презентации (сообщения) при выполнении самостоятельных задач вычислительного эксперимента на ПК.

Оформление презентации: Формат: ***.ppt, классический макет. Шрифт: 16, Times New Roman. Не допускаются отсканированные встроенные графики и рисунки низкого разрешения. Подготовленная презентация должна полностью или частично раскрывать материал. В презентацию должны быть включены следующие положения:

- актуальность темы;
- введение в базовую терминологию;
- обзор информации по изучаемой теме, проблеме (в случае проблемных задач);
- ключевые критерии, положения, модельные задачи;
- техническое выполнение заданий по изучаемой теме;
- выводы и прогнозы.

Выполнение задач вычислительного эксперимента:

Работа по вычислительному практикуму выполняется в минигруппах за компьютерами. Отчет по индивидуальным заданиям вычислительного эксперимента на ПК оформляется в электронном виде в формате ***.doc или ***.docx. Выравнивание текста по ширине. Шрифт Times New Roman. Размер 12. Параметры страницы соответствуют: верхнее 2см, нижнее 2см, левое 2см, правое 2см. Студенты отчитываются индивидуально по выполненной работе.

6. ОБРАЗОВАТЕЛЬНЫЕ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

При реализации различных видов учебной работы по дисциплине возможно применение электронного обучения и дистанционных образовательных технологий. В соответствии с требованиями ФГОС ВО по направлению подготовки реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерное моделирование при реализации вычислительного практикума, разбор конкретных модельных ситуаций во внеурочной работе) с целью формирования и развития требуемых компетенций обучающихся.

6.1. Образовательные технологии

С целью формирования и развития профессиональных навыков у обучающихся в учебном процессе по дисциплине "Квантовая экологическая химия" предусмотрены следующие активные и интерактивные формы проведения лабораторных занятий:

- обучающие компьютерные программы по профилю подготовки, а также знакомство с электронными базами данных.
- работа в минигруппах с применением компьютерных технологий (работа на ПК);
- мини-опросы по текущей теме.

Учебные занятия по дисциплине проводятся с применением информационнотелекоммуникационных сетей при опосредованном (на расстоянии) интерактивном взаимодействии обучающихся и преподавателя в режимах on-line и/или off-line в формах: видеоконференции, «вопрос-ответ» в режиме чата, форума, выполнения практических и/или лабораторных работ и др.

Таблица 5. Образовательные технологии, используемые при реализации учебных занятий

веществ на окружающую среду <i>Тема 2.</i> Общие вопросы гоксикологии. Токсическое	Обзорная лекция	Практическое занятие, семинар Круглый стол (Тематические дискуссии) Вопрос - Ответ	Лабораторная работа Не предусмотрено
Тема 1. Концепции и критерии воздействия химических О веществ на окружающую среду Тема 2. Общие вопросы гоксикологии. Токсическое	Обзорная лекция	(Тематические дискуссии)	
воздействия химических О веществ на окружающую среду Тема 2. Общие вопросы гоксикологии. Токсическое	•	(Тематические дискуссии)	
гоксикологии. Токсическое	Помумя	Вопрос - Ответ	
воздействие веществ на экосистемы	Лекция-диалог	(Фронтальный опрос) Работа над презентациями	Не предусмотрено
<i>Тема 3.</i> Органические и		Задачи для	Не
неорганические токсиканты		самоподготовки	предусмотрено
<i>Раздел II</i> . Реализация экологическ	сих задач соврем	енными квантово-	химическими
методами	Т		T
Тема 1. Программное квантово- кимическое обеспечение	Обзорная лекция	Вопрос - Ответ (Фронтальный опрос)	
химических методов расчета Реа	Лекция с рименением ИТ. ализация модуля	He предусмотрено	Выполнение вычислительного
Тема 3. Современные квантово-	на платформе STEPIK «Молекулы и модели»	Работа над презентациями	эксперимента (з.е. 1)
Раздел III. Корреляционные завис		ектронной структу	 vрой и
реакционной способностью рассма			' 1
Тема 1. Химическая реакционная способность пр молекул Реа	Лекция с рименением ИТ. ализация модуля	Выполнение практических заданий	Выполнение вычислительного эксперимента
Тема 2. Квантово-химическое	на платформе STEPIK «Молекулы и модели»	Работа над презентациями	(3.e.2)
<i>Раздел IV</i> . Моделирование процесс биологическими системами	сов взаимодейст	вия химических ве	ществ с

		Лекция с	Работа над	Индивидуальные
Тема 1.	Проведение	применением ИТ.	презентациями	задания
диагностики	молекул с	Реализация модуля		вычислительного
использование	м квантово-	на платформе		практикума (з.е. 3)
химических	методов	STEPIK		
исследования		«Молекулы и		
		модели»		
Тема 2.	Монанирования		Круглый стол	Индивидуальные
	Моделирование		(Тематические	задания
межмолекуляр взаимодействи		Обзорная лекция	дискуссии)	вычислительного
взаимодеистви	И			практикума (з.е. 4)

6.2. Информационные технологии

Информационные технологии, используемые при реализации различных видов учебной и внеучебной работы:

- использование возможностей Интернета в учебном процессе (использование информационного сайта преподавателя (рассылка заданий, предоставление выполненных работ, ответы на вопросы, ознакомление учащихся с оценками и т.д.));
- использование электронных учебников и различных сайтов (например, электронные библиотеки, журналы и т.д.) как источников информации;
- использование возможностей электронной почты преподавателя (zoloto.chem@mail.ru);
- использование средств представления учебной информации (электронных учебных пособий и практикумов, применение новых технологий для проведения очных (традиционных) лекций и семинаров с использованием презентаций и т.д.);
- использование интегрированных образовательных сред, где главной составляющей являются не только применяемые технологии, но и содержательная часть, т.е. информационные ресурсы (доступ к мировым информационным ресурсам, на базе которых строится учебный процесс);
- использование виртуальной обучающей среды (LMS Moodle «Электронное образование») или иных информационных систем, сервисов и мессенджеров.

6.3. Программное обеспечение, современные профессиональные базы данных и информационные справочные системы

6.3.1. Программное обеспечение

o.c.i. iipoi paniniioe ooceile ieniie	
Microsoft Office 2013	Пакет офисных программ
Платформа дистанционного обучения LMS Moodle	Виртуальная обучающая среда
Google Chrome	Браузер
Notepad++	Текстовый редактор
Avogadro	Молекулярный конструктор
MOPAC2016	Вычислительная химия

6.3.2. Современные профессиональные базы данных и информационные справочные системы

1. Универсальная справочно-информационная полнотекстовая база данных периодических изданий ООО «ИВИС» http://dlib.eastview.com

Имя пользователя: AstrGU

Пароль: AstrGU

- 2. Электронный каталог Научной библиотеки АГУ на базе MARK SQL НПО «Информ-систем» https://library.asu.edu.ru/catalog/
- 3. Электронный каталог «Научные журналы АГУ» https://journal.asu.edu.ru/

- 4. Электронно-библиотечная система BOOK.ru https://book.ru
- 5. Электронно-библиотечная система (ЭБС) ООО «Политехресурс» «Консультант студента» www.studentlibrary.ru Регистрация с компьютеров АГУ
- 6. Единое окно доступа к образовательным ресурсам http://window.edu.ru
- 7. Министерство науки и высшего образования Российской Федерации https://minobrnauki.gov.ru
- 8. Министерство просвещения Российской Федерации https://edu.gov.ru

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

7.1. Паспорт фонда оценочных средств

При проведении текущего контроля и промежуточной аттестации по дисциплине «Квантовая экологическая химия» проверяется сформированность у обучающихся компетенций, указанных в разделе 3 настоящей программы. Этапность формирования данных компетенций в процессе освоения образовательной программы определяется последовательным освоением дисциплин и прохождением практик, а в процессе освоения дисциплины — последовательным достижением результатов освоения содержательно связанных между собой разделов, тем.

Таблица 6. Соответствие разделов, тем дисциплины (модуля), результатов обучения

по дисциплине (модулю) и оценочных средств

по дисциплине (модулю) и оценочных	_ • ` `	
Контролируемый раздел, темы	Код контролируемой	Наименование
дисциплины	компетенции	оценочного средства
Критерии воздействия химических	ПК-2	Круглый стол
веществ на окружающую среду	11112	круглын стол
Общие вопросы токсикологии (1.2.).		
Воздействие веществ на экосистемы	ПК-2	Вопрос - Ответ
(1.3.)		
Принципы оценки токсичности	ПК-2	Работа над презентациями
веществ	1111\(-2	таоота над презентациями
Органические и неорганические	ПК-2	Задачи для самоподготовки
токсиканты	11112	Задачи для самоподготовки
Программное квантово-химическое	ПК-2	Вопрос - Ответ
обеспечение	11112	Bonpoe - Otber
Компьютерная реализация квантово-	ПК-2	Выполнение вычислительного
химических методов (2.2., 2.3.)	11112	эксперимента (з.е. 1)
Химическая реакционная	ПК-2	Выполнение вычислительного
способность молекул	11112	эксперимента (з.е.2)
Квантово-химическое описание	ПК-2	Работа над презентациями
реакций	11112	т аоота пад презептациями
Проведение диагностики молекул с		Индивидуальные задания
использованием квантово-	ПК-2	вычислительного практикума
химических методов исследования		(3.e. 3)
Моделирование межмолекулярных		Индивидуальные задания
взаимодействий	ПК-2	вычислительного практикума
Бэштодонотын		(3.e. 4)

7.2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

В таблицах 7-8 приводятся показатели и критерии оценивания компетенций, шкалы оценивания.

Таблица 7. Показатели оценивания результатов обучения в виде знаний

Шкала оценивания	Критерии оценивания							
5 «отлично»	демонстрирует умение обоснованно излагать свои мысли по обсуждаемым вопросам, способность полно, правильно и аргументированно отвечать на вопросы при отчете вычислительного практикума, приводить примеры							
4 «хорошо»	демонстрирует знание материала, его последовательное изложение, способность приводить примеры, допускает единичные ошибки, исправляемые после замечания преподавателя							
3 «удовлетворительно»	демонстрирует неполное, фрагментарное знание материала при выполнении вычислительного практикума, требующее наводящих вопросов преподавателя, допускает существенные ошибки в его изложении, затрудняется в приведении примеров и формулировке выводов							
2 «неудовлетворительно»	демонстрирует существенные пробелы в знании материала, не способен его изложить и ответить на наводящие вопросы преподавателя, не может привести примеры							

Таблица 8. Показатели оценивания результатов обучения в виде умений и владений

Шкала оценивания	Критерии оценивания						
5 «отлично»	демонстрирует способность применять знание материала при выполнении заданий вычислительного практикума, последовательно и правильно выполняет задания, умеет обоснованно излагать свои мысли и делать необходимые выводы						
4 «хорошо»	демонстрирует способность применять знание материала при выполнении заданий вычислительного практикума, последовательно и правильно выполняет задания, умеет обоснованно излагать свои мысли и делать необходимые выводы, допускает единичные ошибки, исправляемые после замечания преподавателя						
3 «удовлетворительно»	демонстрирует отдельные, несистематизированные навыки, испытывает затруднения и допускает ошибки при выполнении заданий вычислительного практикума, выполняет задание по подсказке преподавателя, затрудняется в формулировке выводов						
2 «неудовлетворительно»	не способен правильно выполнить задания вычислительного практикума						

7.3. Контрольные задания и иные материалы, необходимые для оценки результатов обучения по дисциплине

РАЗДЕЛ 1. Введение в экологическую химию

§1.1 Концепции и критерии воздействия химических веществ на окружающую среду 1. Темы для подготовки презентаций

- а) Экотоксикология, определение и задачи. Современные исследования в области экотоксикологии.
- б) Характеристика молекулярно-биологического воздействия: мутагенность и канцерогенность.
- в) Основные критерии возникновения мутагенеза и канцерогенеза под действием химических веществ.
- г) Современные модели оценки токсичности.

§1.2 Общие вопросы токсикологии

1. Темы для подготовки презентаций

- а) Типы клеточных мембран и основные модели (модель элементарной мембраны; жидкостномозаичная модель).
- б) Основные модели переноса веществ через биологические мембраны с помощью переносчиков.
- в) Ионофоры, структура и механизм функционирования. Современные исследования и поиски новых ионофоров.
- г) Основные направления воздействия токсикантов на биологические структуры.

§1.3 Токсическое воздействие веществ на экосистемы

1. Темы для подготовки презентаций

- а) Действие токсикантов на ферментные системы: блокирование атомов металлов.
- б) Действие токсикантов на ферментные системы: тиоловых и дитиоловых групп.
- в) Действие токсикантов на ферментные системы: блокирование синтеза белков.
- г) Действие на ферментные системы: повреждение желез внутренней секреции.
- д) Действие токсикантов на ферментные системы: блокирование сульфгидрильных групп.
- е) Нарушение в системах, регулирующих уровень Н2О2 в эритроцитах.
- ж) Воздействие фенолов на живые организмы: биохимические основы действия фенолов на структурные элементы живых организмов.

§1.4 Принципы оценки токсичности веществ

1. Темы для подготовки презентаций

- 1. Критерии и концепции оценки вещества. Экспозиция (доза воздействия веществ).
- 2. Современные электронные ресурсы по токсичности, доступные в сети Internet (https://chem.nlm.nih.gov/chemidplus/ поисковая система для установления наличия искомого вещества в одной из многочисленных токсикологических баз данных системы TOXNET; База данных https://www.ccohs.ca/products/cheminfo/ содержит информацию по токсичности, экологической опасности химических соединений; http://www.chemexper.com/ поисковая система карт химической безопасности. Содержит информацию о более 70 тысячах химических веществ).
- 3. Биологическое воздействие химических продуктов. Оценки опасности и риска.
- 4. Оценка химических продуктов с помощью экотоксикологического профильного анализа.

§1.5 Органические и неорганические токсиканты

1. Темы для подготовки презентаций

- а) Поступление в окружающую среду и содержание токсикантов в природных средах. Поведение в окружающей среде и модельных системах.
- б) Токсикологические исследования. Нормы и дозы при различном поступлении в организм. Биологическое действие. Зависимость кожно-раздражающего действия токсикантов и его пороговая концентрация.
- в) Действие органических соединений на органы и системы органов: бромбифенилы, винилхлорид, 1,1-дихлорэтилен, диоксины и родственные им соединения, микотоксины и его производные, изопропаноламины и др.; органические красители; поверхностно-активные вещества и их композиты, синтетические моющие средства; витамины; терпены, различные группы антибиотиков (пенициллин, тетрациклин, блеомицин) и др.
- г) Действие неорганических соединений на органы и системы органов: оксиды серы, азота, сероводород, цианиды, окислители и др.

РАЗДЕЛ 2. Реализация экологических задач современными квантово-химическими методами

§2.1 Программное квантово-химическое обеспечение

1. Темы для постановки вычислительного эксперимента

- 1. Современные комплексы программ для выполнения квантово-химических расчетов. Алгоритмы работы квантово-химических программ.
- 2. Программы визуализаторы результатов квантово-химических расчетов. Подготовка исходных данных, ключевых команд.

§2.2 Компьютерная реализация квантово-химических методов расчета

1. Темы для постановки вычислительного эксперимента

- 1. Задание исходного строения молекул в системе декартовых и сферических (z-матрица) координат. Спецификация молекулы (мультиплетность, заряд, симметрия и др.). Определение и задание базисного набора. Оптимизация геометрии молекулы неэмпирическими и полуэмпирическими методами.
- 2. Оценка стабильности молекулы. Оценка растворимости молекул. Определение нуклеофильных и электрофильных свойств молекулы. Определение жесткости и мягкости молекулы. Определение положения реакционных центров.

§2.3 Современные квантово-химические методы

1. Темы для подготовки презентаций

- а) Неэмпирические методы расчета: базисные функции атомных орбиталей (базисные наборы).
- б) Методы теории функционала плотности.
- в) Полуэмпирические методы расчета: принципы параметризации.
- г) Метод молекулярных орбиталей Хюккеля для оценки реакционной способности органических соединений. Индексы реакционной способности. Примеры реализации.

РАЗДЕЛ 3. Корреляционные зависимости между электронной структурой и реакционной способностью рассматриваемого объекта

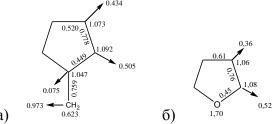
§3.1 Химическая реакционная способность молекул

1. Перечень дискуссионных тем для проведения круглого стола

- 1. Вычисление индексов реакционной способности молекул методом Хюккеля и методом Лонге-Хиггинса. Статический метод Коулсона и Лонге-Хиггинса.
- 2. Статический метод граничных молекулярных орбиталей Фукуи.
- 3. Динамический метод. Приближение Уэланда для переходного состояния реакции.

2. Типовые задания для самоподготовки

1. Вычислите картезианские координаты молекулы метилциана, результаты оформите в таблицу, и спроецируйте 3D модель молекулы:


$$H$$
 C
 $C \equiv N$

Справка для запоминания: Легковоспламеняющаяся жидкость со слабым эфирным запахом, при воспламенении выделяет токсичные пары цианида водорода и оксиды азота. Токсичность обусловлена способностью образовывать соединения с ионами тяжелых металлов, которые блокируют необходимые для клеточного дыхания ферменты, это приводит к асфиксии. При воздействии кожа и дыхательная система должны быть защищены в первую очередь. ПДК загрязняющих веществ в атмосферном воздухе населенных мест регламентируются гигиеническим нормативом ГН 2.1.6.1338-03 и ПДК вредных веществ в воздухе рабочей зоны регламентируются гигиеническим нормативом ГН 2.2.5.686-98.

2. Постройте молекулярную диаграмму и установите, какие реакционные центры в молекуле отвечают за протекание реакций при нуклеофильной, электрофильной и свободнорадикальной атаке на основании следующих дескрипторов:

- -электронная плотность молекулы;
- -порядок π -электронного связывания;
- -индекс свободной валентности;
- -распределение зарядов на атомах;
- -самополяризуемость атомов.
- 3. Выясните реакционную активность атомов в молекулах фульвена (а) и фурана (б), исходя из статического метода Лонге Хиггинса, при радикальной и электрофильной атаке. Рассчитайте величину самополяризуемости исследуемых молекул.

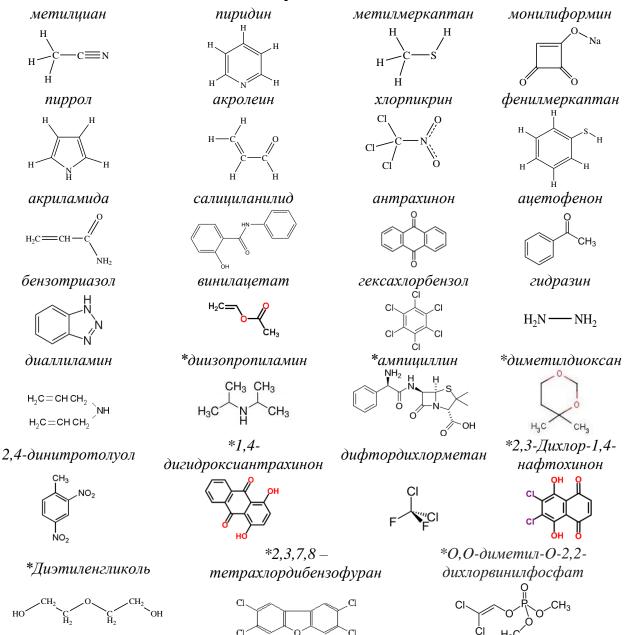
- 4. Сформулируйте основные принципы теории локализации Уэланда. Приведите примеры.
- 5. Выясните, сколько электронов располагается в переходном состоянии фульвена при электрофильном и радикальном замещении.
- 6. Распишите молекулярную диаграмму бутадиена методом МО Хюккеля, указав порядок связи, индекс свободной валентности молекулы, заряды центрального остова и дайте полную характеристику волновых функций молекулярных орбиталей, а также значения энергии МО бутадиена.

§3.2 Квантово-химическое описание реакций

1. Темы для подготовки презентаций

- а) Поверхность потенциальной энергии химической реакции. Теория переходного состояния. Расчет поверхности потенциальной энергии химической реакции.
- б) Особые точки равновесных и переходных состояний. Путь химической реакции, координата реакции. Квантово-химическое описание химических реакций в жидкой и твердой фазе.
- в) Молекулярный электростатический потенциал. Абсолютная жесткость и абсолютная мягкость молекулярных систем. Энергия диссоциации химической связи в молекулярной системе.
- г) Орбитальные модели взаимодействия молекул с поверхностью. Хемосорбция. Квантовая химия каталитических реакций.

2. Темы для постановки вычислительного эксперимента


- 1. Расчет энергии активации элементарной химической реакции.
- 2. Расчет константы равновесия, скорости реакции и константы скорости реакции.

РАЗДЕЛ 4. Моделирование процессов взаимодействия химических веществ с биологическими системами

- §4.1 Проведение диагностики макромолекулярных систем с использованием квантовохимических методов исследования
 - 1. Индивидуальные задания вычислительного эксперимента (з.е. №1)

Составление молекулярных диаграмм для несложных молекул и предсказания их реакционной способности с применением метода молекулярных орбиталей Хюккеля и с помощью полуэмпирических и неэмпирических методов. Нахождение порядков связей, индексов свободной валентности, распределения зарядов и других структурных и энергетических параметров.

Варианты

Примерный план отчета вычислительного лабораторного задания

- 1. Цель и задачи исследования.
- 2. Способы реализации, методы исследования.
- 3. Составление молекулярной диаграммы, графические иллюстрации.
- 4. Основные положения и математический аппарат.
- 5. Анализ теоретически полученных данных, описание реакционной способности молекулы.
- 6. Анализ сведений о биологической активности соединения, токсичности и класса опасности, наличие антидотов, блокаторов.
- 7. Обобщенные выводы.

Типовой макет отчета

- 1. Визуализация молекул осуществляется с использованием программ, имеющих бесплатное распространение в академических целях: MaSK (http://ccmsi.us/mask/); Avogadro (https://avogadro.cc/); Jmol (http://jmol.sourceforge.net/); RasMol (http://www.openrasmol.org/).
- 2. Сохранение оптимизированной молекулы в декартовых и во внутренних координатах по образцам:

P									
Пространственное описание в декартовых координатах									
Тип _номер ап	пома Пор	ядковый ном	ер х		У	z			
•••									
Простро	анственное о	описание во в	внутренних в	координан	nax (z-матрі	ица)			
Тип атома	№ атома	r, Å (нм)	№ атома	θ , $^{\circ}$	№ атома	φ, °			

- 3. Составление входного файла (.mop; .inp) для вычисления. Выполнить расчет, указанным методом. Для выполнения расчетов могут быть использованы следующие программы бесплатного распространения в академических целях: MOPAC (http://openmopac.net/); GAMESS (https://www.msg.chem.iastate.edu/GAMESS/download/register/). Примеры файлов, описание ключевых команд и, реализуемые методы вычисления программы GAMESS находятся в разделе (https://www.msg.chem.iastate.edu/gamess/documentation.html), MOPAC (http://openmopac.net/Manual/index.html). Постановка задачи на расчет.
- 4. Обработка выходного файла (.out). Заполнить таблицу по образцу (заполнение ячеек согласно требованиям вычислительного практикума):

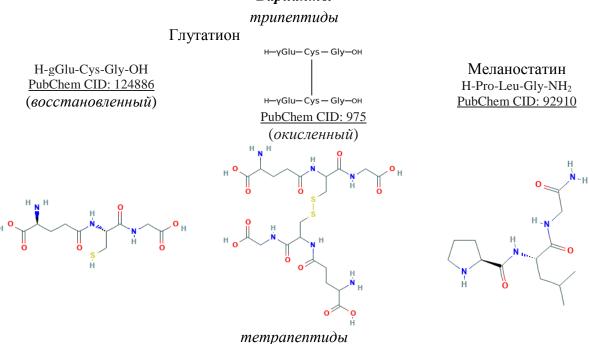
	Структурные параметры молекулы												
	ы связеі ;, Å		алентны углы, θ,°	е тор		ионные заряд на атомах,					мент мол ебай	екулы, μ,	
		реак	ционног	о центр	а моле	кулы				средн		гичный г Gradient	градиент)
	•••		•••		•••			••				•••	
				Энерге	тичесн	кие пар	аме	тры л	иолег	кулы			
ПЈ	пощадь		энергии	гранич	ных М	O, E _{MO} ,	эВ		кол	ичеств	о связыв	ающих 1	MO
	лекулы _{cosmo} , Å ²		B3MO ((HOMO) HCMO (LUMO)									
								В	еличі	ина эне	ергетиче	ской щел	ти, эВ
	• • •			•		• • •							
объем	молек	улы,	потен	щиал	обща	общая энергия,				тепло	та образо	ования,	
V_{c}	cosmo, Å ³	3	ионизац	ии, І, эІ	B Etot, 1	Е _{tot} , кДж/моль				H_{f}	; , кДж/м	ОЛЬ	
				•									
			часп	10ты к	олебані	ий функ	цио	нальн	ых г	pynn, c.	M^{-1}		
ква	нтово-	механ	ические	вычисл	ения			экспе	риме	енталы	ные (спр	авочные	
вален	тные -	v _s , v _{as}	дефор	мацио	ные -	δ в	ален	тные	- V _s ,	\mathbf{v}_{as}	дефор	омацион	ные - δ
			T	<i>ј</i> ермоди	намиче	еские по	рал	іетрь	і мо л	іекулы			
ЭН	энтальпия, энтропия, изобарно-изотермический теплоемкост						сть,						
	кДж/мс			ж/(молі		потенциал, G, кДж/моль C_P/C_V , Дж/(моль				оль·К)			
273K	298K	318K	273K	298K	318K	273K	2	98K	3	18K	273К	298K	318K

- 5. Построение графика зависимости «Среднеквадратичного градиента (или Общей энергии) от количества шагов оптимизации (*n*)» для равновесной структуры молекулы.
- 6. Сопоставить результаты расчетов с экспериментальными (справочными) данными. Указать наилучшую сходимость полученных данных с результатами эксперимента.
- 7. Сделать вывод о структуре и реакционной способности молекул. Установить активные центры в структурах.

Общие требования к выполнению и отчету

Работа считается выполненной, если построены молекулярные диаграммы молекул, приведены необходимые расчеты геометрических и энергетических параметров, проанализированы свойства, сделаны соответствующие выводы реакционной способности изучаемого соединения и представлены сведения о биологической активности, токсичности вещества, данные о существующих антидотах или блокатарах.

§4.3 Моделирование межмолекулярных взаимодействий


H-BAla-His-Ser-His-OH

PubChem CID: 71587844

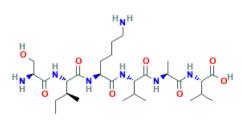
1. Индивидуальные задания вычислительного эксперимента (з.е. №2)

Моделирование контактных взаимодействий между токсикантами и модельными структурными фрагментами – три-, тетра-, пента-, гекса-, гептапепид, фосфолипиды. Анализ энергетических и структурных параметров моделируемых систем. Поиск наиболее активной функциональной группы в структуре модельного компонента.

Варианты

H-Gly-Glu-Lys-Gly-OH

PubChem CID: 42630677


пентапетиды

H-Lys-Thr-Thr-Lys-Ser-OH PubChem CID: 9959565

H-Pyr-Glu-Asp-Cys-Lys-OH <u>PubChem CID: 123651</u>

гексапептиды

H-Ser-Ile-Lys-Val-Ala-Val-OH PubChem CID: 10145673

H-Phe-Gly-His-Sta-Ala-Phe-OMe <u>PubChem CID: 194954</u>

2enmanenmuð H-Asp-Ala-Phe-Ile-Gly-Leu-Met-NH2 <u>PubChem CID: 5748244</u>

 $\begin{array}{c} \textit{фосфолипиды} \\ \text{C_{33}H}_{58}\text{N}_{5}\text{O}_{8}\text{P} \\ \underline{\text{PubChem CID: } 135538722} \end{array}$

Примерный план отчета

- 1. Цель и задачи исследования.
- 2. Способы реализации, методы исследования.
- 3. Составление молекулярной диаграммы, систем межмолекулярных взаимодействий, графические иллюстрации.
- 4. Анализ вычисленных данных и установление активных функциональных групп в модельном фрагменте.
- 5. Обзор сведений о модельном фрагменте (место локализации, основные функции).
- 6. Обобщенные выводы: о функциональной активности выбранной модели фрагмента клеточной мембраны, о наличии или отсутствии потенциальных мишеней на поверхности модельной системы, о подборе потенциального антидота к токсичной молекуле.

Типовой макет отчета

- 1. Визуализация модельного фрагмента (*n*-пептид, фосфолипид) осуществляется с использованием программ, имеющих бесплатное распространение в академических целях: MaSK (http://ccmsi.us/mask/); Avogadro (https://avogadro.cc/); Jmol (http://jmol.sourceforge.net/); RasMol (http://www.openrasmol.org/).
- 2. Сохранение оптимизированного модельного фрагмента (*n*-пептид, фосфолипид) в декартовых и во внутренних координатах по образцам:

Пространственное описание в декартовых координатах								
Тип номер атома Порядковый номер х у z								

Пространственное описание во внутренних координатах (z-матрица)

Тип атома	№ атома	r, Å (нм)	№ атома	θ, °	№ атома	φ, °
•••		•••		•••	•••	• • •

- 3. Составление входного файла (.mop; .inp) для вычисления. Выполнить расчет, указанным методом. Для выполнения расчетов могут быть использованы следующие программы бесплатного распространения в академических целях: MOPAC (http://openmopac.net/); GAMESS (https://www.msg.chem.iastate.edu/GAMESS/download/register/). Примеры файлов, описание ключевых команд и, реализуемые методы вычисления программы GAMESS находятся в разделе (https://www.msg.chem.iastate.edu/gamess/documentation.html), MOPAC (http://openmopac.net/Manual/index.html). Постановка задачи на расчет.
- 4. Обработка выходного файла (.out). Модельная система иллюстрирует контактное взаимодействие между молекулой токсиканта и модельным фрагментом (*n*-пептид, фосфолипид) клеточной мембраны. Заполнить таблицу по образцу:

	Структурные и энергетические параметры модельной системы										
длины с r, <i>A</i>			ентные торсионные з ы, θ,° углы, φ,°		_		заряд на атомах,		квадратичнь Gradi	ій градиент (RMS ent)	
1, F	1	yıııı	ы, θ,°	углы,	ψ,		q, а.е.з.			•••	
pe	акцион	ного	центр	а в мод	ельно	ой сис	стеме		кол	ичество связ	ывающих МО
							•••				
площади	ь систе	мы,	энерги	и грани	чных	MO,	Емо, э	В	величин	на энергетич	еской щели, эВ
S_{\cos}	$_{\rm mo}$, ${\rm \AA}^2$		ВЗМО	(HOM	OH (C	CMO	(LUMC))		•••	
									теплота	образования	я, H _f , кДж/моль
объем	систем	ы,	ното	енциал	uauur		I ₂ D				
V_{\cos}	_{mo} , Å ³		потс	лциал	иониз	ации	, 1, 3 D		общая энергия, Е _{tot} , кДж/моль		
			•••								
	Час	mom	ы коле	гбания д	рункц	иона.	пьных г	pyni	ı в реакці	ионном цент	ре, см ⁻¹
кван	тово-м	ехан	ически	е вычи	слени	R		эк	сперимен	тальные (сп	равочные)
валенти	ные - vs	s, Vas	дефо	ормаци	онны	e - δ	вален	тны	e - v _s , v _{as}	дефор	мационные - δ
											•••
			Терм	одинам	ическ	ue na	рамет	ры л	иодельно <i>і</i>	ї системы	
измене	ние энт	гальп	ии,	измене	ние э	нтроі	тии,	И	зменение	изобарно-из	вотермического
ΔΗ	, кДж/м	иоль		ΔS , λ	Дж/(м	юль•Н	()		потег	нциала, ΔG,	кДж/моль
273K	298K	31	18K	273K	298]	Κ 3	18K	2	273K	298K	318K
										•••	•••

- 5. Построение графика зависимости «Среднеквадратичного градиента (или Общей энергии) от количества шагов оптимизации (n)» для равновесной модельной системы.
- 6. Анализ термодинамики процесса взаимодействия в модельной системе. Выводы о потенциальных мишенях в модельном фрагменте и энергетике процессов.
- 7. Построение корреляционных зависимостей в модельных системах «Структура Свойство», «Структура Активность».

Общие требования к выполнению и отчету

Работа считается выполненной, если составлены системы межмолекулярных взаимодействий, заполнена таблица структурных, энергетических и термодинамических параметров, сделаны выводы об активности потенциальных мишеней в модельном фрагменте, построены корреляционные зависимости «Структура — Свойство», «Структура — Активность» и сделаны соответствующие выводы.

Лабораторно-вычислительная работа на тему:

Прогноз видов биологической активности малых молекул

- 1. PASSonline (www.way2drug.com/passonline/) предназначен для прогнозирования спектра биологической активности веществ из обучающей выборки, содержащей более 45000 разнообразных биологически активных субстанций известных лекарственных препаратов и фармакологически активных соединений. Для работы с элементами веб-ресурса PASSonline требуется регистрация.
- 2. Информация на выходе представлена в виде списка прогнозируемых видов активности с оценками вероятности наличия каждого вида активности P_a и вероятности отсутствия каждого вида активности P_i , которые могут принимать значения от нуля до единицы.

Чем больше для конкретной активности значение P_a и чем меньше значение P_i , тем больше шанс обнаружить данную активность в эксперименте и меньше вероятность ложноположительных прогнозов!

3. Исследуйте изомерные и гомологичные соединения. Внесите данные в таблицу вида:

Биологическая	Соедин	ение №1	Соеди	нение №2	Соединение №3		
активность	Pa	Pi	Pa	Pi	Pa	Pi	

4. Проанализируйте и запишите в выводах: обладают ли выбранные соединения схожими фармакологическими активностями. Наблюдаются ли существенные различия в проявлении вероятных побочных эффектов. В первую очередь какие органы подвергаются воздействию?

Лабораторно-вычислительная работа на тему:

Прогноз острой токсичности малых молекул

- 1. GUSAR (www.way2drug.com/gusar/acutoxpredict.html) предназначен для создания моделей «Структура Активность» Quantitative Structure Activity Relationship / «Структура Свойство» Quantitative Structure Property Relationship на основе соответствующих обучающих наборов. Компьютерное моделирование (In silico) острой токсичности оценивается на основании значений LD₅₀ (log₁₀(mmol/kg)) для крыс при различных видах введения (перорально, внутривенно, внутрибрющинно, подкожно, ингаляционно).
- 2. Исследуйте изомерные и гомологичные соединения. Внесите данные в таблицу вила:

Пути введения	Соединение №1	Соединение №2	Соединение №3					
	Орально (Перорально)							
mmol/kg								
(mg/kg)								
Класс опасности								
	Внут	рибрюшинно						
mmol/kg								
(mg/kg)								
Класс опасности								
	Вн	утривенно						
mmol/kg								
(mg/kg)								
Класс опасности								
	Подкожно							
mmol/kg								
(mg/kg)								
Класс опасности								

3. Проанализируйте и запишите в выводах: обладают ли выбранные соединения схожими эффектами токсичности. Наблюдаются ли существенные различия в способах введения. Сделайте вывод о максимальной степени распространения?

Перечень вопросов и заданий, выносимых на экзамен / зачёт / дифференцированный зачёт

- 1. Молекулярно-биологическое воздействие: мутагенность. Основные критерии возникновения мутагенеза. Модели оценки токсических воздействий.
- 2. Молекулярно-биологическое воздействие. Основные критерии возникновения канцерогенеза. Модели оценки токсических воздействий.
- 3. Существующие модели транспорта веществ через клеточные мембраны. Энергетика процессов пассивного и активного транспорта. Перенос веществ через биологические мембраны с помощью переносчиков.
- 4. Основные структурные особенности ионофоров. Катионная селективность ионофоров. Динамика комплексообразования с ионофорами. Антибиотики-каналообразователи.

- 5. Поллютанты техногенного происхождения: выбросы в атмосферу. Статистика и многолетняя оценка за качеством воздуха и озонового слоя. Существующие грантовые программы в России и за рубежом по исследованию научными группами способов очистки воздушных потоков.
- 6. Неорганические и органические загрязнители. Связь между строением веществ и их токсичностью. Действие токсикантов на ферментные системы. Прямое воздействие токсикантов на ферменты.
- 7. Связь между строением веществ и их токсичностью. Блокирование атомов металлов и цитохромов. Блокирование тиоловых и дитиоловых групп. Воздействие по типу «летального синтеза». Блокирование синтеза белка.
- 8. Связь между строением веществ и их токсичностью. Повреждение желез внутренней секреции. Механизмы гемолиза. Блокирование сульфгидрильных групп.
- 9. Ферментативные нарушения в эритроцитах. Нарушение систем, регулирующих уровень пероксида водорода в эритроцитах. Механизмы метгемоглобинообразования.
- 10. Воздействие фенолов на живые организмы. Биохимические основы действия фенолов на структурные элементы живых организмов.
- 11. Критерии и концепции оценки вещества. Экспозиция (доза воздействия веществ). Методы прогноза и оценки опасности, риска. Оценка химических продуктов с помощью экотоксикологического профильного анализа.
- 12. Поведение органических и неорганических токсикантов в окружающей среде и модельных системах. Исследования научных лабораторий в России и за рубежом.
- Токсикологические исследования. Нормы и дозы при различном поступлении в организм.
 Биологическое действие. Зависимость кожно-раздражающего действия токсикантов и его пороговая концентрация.
- 14. Модели действия токсикантов бромбифенилов и винилхлорида на органы и системы органов. Исследования научных лабораторий в России и за рубежом.
- 15. Модели действия токсикантов 1,1-дихлорэтилена, диоксинов на органы и системы органов. Исследования научных лабораторий в России и за рубежом.
- 16. Модели действия токсикантов микотоксинов и его производных на органы и системы органов. Исследования научных лабораторий в России и за рубежом.
- 17. Модели действия токсикантов изопропаноламинов и органических красителей на органы и системы органов. Исследования научных лабораторий в России и за рубежом.
- 18. Модели действия токсикантов поверхностно-активных веществ и их композитов на органы и системы органов. Исследования научных лабораторий в России и за рубежом.

- 19. Модели действия токсикантов терпенов на органы и системы органов. Исследования научных лабораторий в России и за рубежом.
- 20. Модели действия токсикантов различных групп антибиотиков (пенициллин, тетрациклин, блеомицин) и др. на органы и системы органов. Исследования научных лабораторий в России и за рубежом.
- 21. Модели действия токсикантов оксидов серы, азота, сероводорода на органы и системы органов. Исследования научных лабораторий в России и за рубежом.
- 22. Модели действия токсикантов цианидов, окислители и др. на органы и системы органов Исследования научных лабораторий в России и за рубежом.
- 23. Статические методы и модели прогноза реакционной активности химических соединений. Основные критерии и параметры, вычисляемые в статических методах.
- 24. Динамические методы и модели прогноза реакционной активности химических соединений. Основные критерии и параметры, вычисляемые в динамических методах.
- 25. Статистические методы и модели прогноза реакционной активности химических соединений. Основные критерии и параметры, вычисляемые в статистических методах.
- 26. Низкомолекулярные модели белковых систем: природные трипептиды, тетрапептиды, пентапептиды. Запатентованные пептидные последовательности в косметологии.
- 27. Участие глутатиона в биохимических окислительных процессах. Исследования научных лабораторий в России и за рубежом.

Таблица 9. Примеры оценочных средств с ключами правильных ответов

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
ПК-	2 – Способе	н выбирать технические средств	ва и методы испытаний (и	сследований)
для	решения по	ставленных задач химической напр	равленности	
1.	Задание	Волновая функция – это	a	1
	закрытого	а) величина, полностью		
	типа	описывающая состояние		
		микрообъекта и любой квантовой		
		системы; б) вероятность		
		нахождения частицы в		
		определенный момент времени <i>t</i>		
		в точке пространства с		
		координатами x, y, z ; в) величина,		
		полностью описывающая		
		состояние макрообъекта; г)		
		функция волны.		
2.		Волновая функция обязана	В, Г	1
		удовлетворять ряду требований		
		(несколько вариантов):		
		а) однозначности и конечности		
		во всем пространстве		

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
		переменных; б) непрерывности, однозначности и конечности во всем пространстве переменных; в) должна быть, как минимум дважды дифференцируема и однозначна; г) нормированности, непрерывности, однозначности и конечности во всем пространстве переменных.		
3.		Установите определитель для молекулы изобутена C_4H_8 : a) $\begin{vmatrix} y & 1 & 0 & 0 \\ 1 & y & 1 & 1 \\ 0 & 1 & y & 0 \\ 0 & 1 & 0 & y \end{vmatrix}$ $\begin{vmatrix} y & 1 & 0 & 0 \\ 1 & y & 1 & 0 \\ 0 & 1 & y & 0 \\ 0 & 0 & 1 & y \end{vmatrix}$ $\begin{vmatrix} y & 1 & 0 & 0 \\ 1 & y & 1 & 0 \\ 0 & 1 & y & 0 \\ 0 & 0 & 1 & y \end{vmatrix}$ $\begin{vmatrix} y & 1 & 0 & 1 \\ 1 & y & 1 & 0 \\ 0 & 1 & y & 1 \\ 1 & 0 & 1 & y \end{vmatrix}$ $\begin{vmatrix} y & 1 & 0 & 0 \\ 1 & y & 1 & 1 \\ 0 & 1 & y & 1 \\ 0 & 1 & 1 & y \end{vmatrix}$	a	1
4.		Собственные волновые функции φ_n и φ_m являются ортонормированными, выполняется условие: а) $\int \Psi_m^* \Psi_n d\tau = \delta_{mn}$ б) $\int \Psi_m^* \Psi_n d\tau = 1$ г) $\int \Psi_m^* \Psi_n d\tau \neq 0$	a	1
5.		Метод молекулярных орбиталей Хюккеля основан на ряде приближений: а) σ-электронным	б	1

№ п/п	Тип задания	Формулировка задания б) пренебрежение интегралами межэлектронного отталкивания	Правильный ответ	Время выполнения (в минутах)
		в) π-электронным		
6.	Задание открытого типа	Основные отличия мутагенности от канцерогенности?	Мутагенность способность к мутационным наследственным изменениям. это свойства некоторых химических, физических и биологических факторов самостоятельно или в комплексе с др. факторами вызывать или содействовать развитию злокачественных новообразований. Подобные факторы называются канцерогенными, а процесс возникновения опухолей в результате их воздействия — канцерогенезом.	5
7.		Составьте систему линейных уравнений для молекулы СО(СН3)2 и опишите, какие параметры включены в описание простого метода Хюккеля	Система МО ЛКАО для молекулы будет иметь следующий вид:	5
8.		Решить задачу и описать этапы вычисления: Вычислите декартовы координаты хлорноватистой кислоты HOCl. Известны радиусы по Полингу (Å) для $H = 0.3$; $O = 0.66$, $Cl = 0.99$.	Пронумеруем атомы и центрируем на координатной сетке. Поскольку молекула укладывается в плоскости ху, то целесообразно упростить вычислительную модель. Таким образом, связь O¹-C¹² будет вытянута вдоль	5-8

№	Тип	Формулировка задания	Правильный	Время выполнения
п/п	задания		оси х, а Н будет направлен в третью четверть под углом 104 градуса. Что приблизительно соответствует валентному углу в молекуле воды. Для О¹ координаты соответствуют (0;0;0). Для Сl²: x=(R(O)+R(Cl))·cos(0)==(0,66+0,99)·1=1,65 y=(R(O)+R(Cl))·sin(0)==(0,66+0,99)·0=0 z=0. Для Н³: x=(R(H)+R(O))·cos(180-104)==(0,3+0,66)·0,24=0,23 y=(R(H)+R(O))·sin(76)==(0,3+0,66)·0,97=0,93 z=0. Следовательно, атомы в молекуле хлорноватистой кислоты имеют следующие декартовы координаты: О¹ (0;0;0) Cl² (1,65;0;0) H³ (0,23;0,93;0)	(в минутах)
9.		Решить задачу и определить вычислительную модель: Электрон заключен в полииновой молекуле длиной 20 нм. Рассчитайте энергию основного состояния?	Движение электрона в полииновой молекуле можно представить в рамках модели движения частицы в прямоугольном ящике с бесконечно высокими стенками. Тогда, энергию электрона в основном состоянии можно вычислить по формуле: $E_1=(\pi^2\cdot n^2\cdot (h/2\pi)^2)/(2\cdot m_e\cdot a^2)$. Таким образом, $E_1=((3,14)^2\cdot 1^2\cdot (1,054\cdot 10^{-34}\ \text{Дж/c}))/((2\cdot 9,11\cdot 10^{-31}\ \text{кг})\cdot (20\cdot 10^{-9}\text{м})^2)=1,503\cdot 10^{-22}\ \text{Дж}$	5-8
10.		Ниже представлен график функции радиального распределения электронной	Функция $\sigma(r)$ имеет максимум при $r = 0.53$ Å, что свидетельствует	5-8

<u>№</u> п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
		плотности для основного состояния атома водорода. О чем свидетельствует максимум на кривой и значение 1,41Å? $\sigma(r) = \frac{\sigma(r) - \max}{P = 0.33} = \frac{0.90}{1.41}$	максимальной вероятности нахождения электрона на расстоянии отличном от нуля. Данное расстояние совпадает с радиусом первой орбиты по теории Бора. Однозначно точно указать объем пространства, в котором вероятность нахождения электрона будет равна 1 (100%), невозможно и указать, в какой точке пространства находится электрон в данный момент. Поэтому указывается объем пространства, в пределах которого вероятность нахождения электрона составляет величину 0,9 (90%). Такая область пространства называется орбиталью электрона, в отличие от орбиты в классической теории. Для основного состояния атома водорода радиус орбитали составляет 1,41Å.	

7.4. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине (модулю)

Методические материалы составляют систему текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины, закрепляют виды и формы текущего контроля, сроки проведения, а также виды промежуточной аттестации по дисциплине, ее сроки и формы проведения. В системе контроля указывается процедура оценивания результатов обучения по данной дисциплине при использовании бально-рейтинговой системы, показывается механизм получения оценки, основные положения БАРС, указывается система бонусов и штрафов, примерный набор дополнительных показателей.

Преподаватель, реализующий дисциплину, в зависимости от уровня подготовленности обучающихся может использовать иные формы, методы контроля и оценочные средства, исходя из конкретной ситуации.

Таблица 10. Технологическая карта рейтинговых баллов по дисциплине (модулю)

No	Контролируемые	Количество	Максимальное	Срок
110	мероприятия	мероприятий/баллы	кол-во баллов	представления

Основной блок				
1	Посещение занятий	0,5 балла за занятие		По расписанию
2	«Активность» студента на занятиях	0,5 балла за занятие	18	По расписанию
3	Выполнение практических	заданий		
3.1	Раскрытие проблемного вопроса вычислительного практикума	0,4 баллов за работу	2	По расписанию
3.2	Обоснованные ответы по актуальным темам	2 балла за занятие	4	По расписанию
3.3	Выполнение вычислительного эксперимента. Отчет по работе	4 балла за отчет	12	По расписанию
4	Индивидуальные задания (4 зач. ед.)	6/6/6/6 баллов за выполненное задание	24	По расписанию
Про	межуточный контроль	60		
6 Экзамен 40 ба		40 баллов	40	По расписанию
ИТ	ОГО	100	ЭКЗАМЕН	

Таблица 11. Система штрафов (для одного занятия)

таолица 11. Система штрафов (дли одного запитил)		
Показатели	Балл	
Опоздание (более двух раз)	-2	
Не готов(а) к практической части лабораторных занятий	-3	
Нарушение учебной дисциплины	-2	
Пропуск лекций без уважительной причины (за одно занятие)	-3	
Пропуск лабораторного занятия без уважительной причины (за одно занятие)	-3	
Нарушение правил техники безопасности	-2	

Таблица 12. Шкала перевода рейтинговых баллов в итоговую оценку за семестр по дисциплине (модулю)

Сумма баллов	Оценка по 4-балльной шкале	
90–100	5 (отлично)	Зачтено
85–89		
75–84	4 (хорошо)	
70–74		
65–69	2 (удордогрорудану но)	
60–64	3 (удовлетворительно)	
Ниже 60	2 (неудовлетворительно)	Не зачтено

При реализации дисциплины (модуля) в зависимости от уровня подготовленности обучающихся могут быть использованы иные формы, методы контроля и оценочные средства, исходя из конкретной ситуации.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Основная литература

- 1. Исидоров В.А. Экологическая химия: учеб. пособ. для вузов ... спец. "Охрана окружающей среды и рациональное использование природных ресурсов". СПб.: Химиздат, 2001. 304 с.
- 2. Барановский В.И. Квантовая механика и квантовая химия: учеб. пособ. для студентов вузов ... по химическим специальностям. М.: Академия, 2008. 384 с.
- 3. Ложниченко О.В. Экологическая химия: учебное пособие для вузов / О.В. Ложниченко, И.В. Волкова, В.Ф. Зайцев М.: Академия, 2008. 272 с.
- 4. Холанд А. Молекулы и модели. Молекулярная структура соединений элементов главных групп / перевод. Г. Гиричев, Н. Гиричева Красанд, УРСС, 2011. 384 с.
- 5. Соловьев М.Е., Соловьев М.М. Компьютерная химия. М.: СОЛОН-Пресс, 2005. 536с.
- 6. Гельман Г. Квантовая химия/предисл. и коммент. А.Л. Чугреева; Доп. Г. Гельмана мл. 2-е изд.; доп. М.: БИНОМ. Лаб. знаний, 2011. 533 с.
- 7. Плетенёва Т.В., Токсикологическая химия [Электронный ресурс] / "Плетенева Т.В., Сыроешкин А.В., Максимова Т.В.; Под ред. Т.В. Плетенёвой" М.: ГЭОТАР-Медиа, 2013.-512c. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785970426357.html

8.2. Дополнительная литература

- 1. Фелленберг Г. Загрязнение природной среды. Введение в экологическую химию / пер. с нем. А.В. Очкина; Под ред. К.Б. Заборенко. М. : Мир, 1997. 232 с.
- 2. Цирельсон В.Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела: учебное пособие для вузов / В.Г. Цирельсон М. : Лаборатория знаний, 2017. 522 с. (Учебник для высшей школы) Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785001015024.html
- 3. Каплан И.Г. Межмолекулярные взаимодействия. Физическая интерпретация, компьютерные расчеты и модельные потенциалы / И.Г. Каплан М.: Лаборатория знаний, 2017. 397 с. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785001015031.html
- 4. Калетина Н.И. Токсикологическая химия. Метаболизм и анализ токсикантов / Под ред. проф. Н.И. Калетиной М.: ГЭОТАР-Медиа, 2008. Текст: электронный // ЭБС "Консультант студента": [сайт].
 - URL: http://www.studentlibrary.ru/book/ISBN9785970406137.html
- 5. Калетина Н.И. Токсикологическая химия. Ситуационные задачи и упражнения / Н. И. Калетина М. : ГЭОТАР-Медиа, 2007. 352 с. Текст: электронный // ЭБС "Консультант студента": [сайт].
 - URL: http://www.studentlibrary.ru/book/ISBN9785970405406.html
- 6. С.А. Еремин и др. Токсикологическая химия. Аналитическая токсикология: учебник / Еремин С.А., Калетин Г.И., Калетина Н.И. и др. Под ред. Р.У. Хабриева, Н.И. Калетиной М. : ГЭОТАР-Медиа, 2010. 752 с. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785970415375.html
- 7. Колок А. Современные яды: Дозы, действие, последствия / Колок А. М. : Альпина Паблишер, 2017. 215 с. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785961458688.html

8.3. Интернет-ресурсы, необходимые для освоения дисциплины

- 1. Электронная библиотека «Астраханский государственный университет» собственной генерации на платформе ЭБС «Электронный Читальный зал БиблиоТех» https://biblio.asu.edu.ru Учётная запись образовательного портала АГУ
- 2. Электронно-библиотечная система BOOK.ru https://book.ru

3. Электронно-библиотечная система (ЭБС) ООО «Политехресурс» «Консультант студента». Многопрофильный образовательный ресурс «Консультант студента» является электронной библиотечной системой, предоставляющей доступ через Интернет к учебной литературе и дополнительным материалам, приобретённым на основании прямых содержит 15 000 правообладателями. Каталог более наименований изданий. www.studentlibrary.ru Регистрация с компьютеров АГУ

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническое обеспечение учебной дисциплины включает в себя аудиторию для проведения вычислительно-практических занятий, компьютерный (дисплейный) класс. В учебном процессе для освоения дисциплины используются компьютерные, мультимедийные оборудования. Программа включает в себя материалы вычислительного практикума на ПК для самостоятельной работы студентов.

10. ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ (МОДУЛЯ) ПРИ ОБУЧЕНИИ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Рабочая программа дисциплины (модуля) при необходимости может быть адаптирована для обучения (в том числе с применением дистанционных образовательных технологий) лиц с ограниченными возможностями здоровья, инвалидов. Для этого требуется заявление обучающихся, являющихся лицами с ограниченными возможностями здоровья, инвалидами, или их законных представителей и рекомендации психолого-медико-педагогической комиссии. При обучении лиц с ограниченными возможностями здоровья учитываются их индивидуальные психофизические особенности. Обучение инвалидов осуществляется также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).

Для лиц с нарушением слуха возможно предоставление учебной информации в визуальной форме (краткий конспект лекций; тексты заданий, напечатанные увеличенным шрифтом), на аудиторных занятиях допускается присутствие ассистента, сурдопереводчиков И тифлосурдопереводчиков. Текущий контроль успеваемости осуществляется в письменной форме: обучающийся письменно отвечает на вопросы, письменно выполняет практические задания. Доклад (реферат) также может быть представлен в письменной форме, при этом требования к содержанию остаются теми же, а требования к качеству изложения материала (понятность, качество речи, взаимодействие с аудиторией и т. д.) заменяются на соответствующие требования, предъявляемые к письменным работам (качество оформления текста и списка литературы, грамотность, наличие иллюстрационных материалов и т. д.). Промежуточная аттестация для лиц с нарушениями слуха проводится в письменной форме, при этом используются общие критерии оценивания. При необходимости время подготовки к ответу может быть увеличено.

Для лиц с нарушением зрения допускается аудиальное предоставление информации, а также использование на аудиторных занятиях звукозаписывающих устройств (диктофонов и т. д.). Допускается присутствие на занятиях ассистента (помощника), оказывающего обучающимся необходимую техническую помощь. Текущий контроль успеваемости осуществляется в устной форме. При проведении промежуточной аттестации для лиц с нарушением зрения тестирование может быть заменено на устное собеседование по вопросам.

Для лиц с ограниченными возможностями здоровья, имеющих нарушения опорнодвигательного аппарата, на аудиторных занятиях, а также при проведении процедур текущего контроля успеваемости и промежуточной аттестации могут быть предоставлены необходимые технические средства (персональный компьютер, ноутбук или другой гаджет); допускается присутствие ассистента (ассистентов), оказывающего обучающимся необходимую техническую помощь (занять рабочее место, передвигаться по аудитории, прочитать задание, оформить ответ, общаться с преподавателем).