МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева» (Астраханский государственный университет им. В. Н. Татищева)

СОГЛАСОВАНО	УТВЕРЖДАЮ
Руководитель ОПОП	Заведующий кафедрой химии
Н.И. Захаркина	Л.А. Джигола
«31» августа 2023 г.	«31» августа 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) «ОРГАНИЧЕСКАЯ И ФИЗКОЛЛОИДНАЯ ХИМИЯ»

Составитель(и)	Чабакова А.К., доцент, к.х.н., доцент
Направление подготовки /	36.05.01 ВЕТЕРИНАРИЯ
специальность	
Направленность (профиль) ОПОП	Ветеринарный врач
Квалификация (степень)	специалист
Форма обучения	очно-заочная
Год приёма	2022
Курс	2
Семестр(ы)	3

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- **1.1. Целями освоения дисциплины «Органическая и физколлоидная химия»** являются формирование способности понимать физико-химическую суть процессов в дисперсных системах и использовать основные законы коллоидной химии в комплексной ветеринарной деятельности.
- 1.2. Задачи освоения дисциплины (модуля): приобретение студентами знаний о закономерностях строения и реакционной способности основных классов органических соединений; роли и распространении органических соединений в природе, использовании человеком в практической деятельности; получение студентами знаний об основных группах органических соединений, их свойствах, механизмах и общих законах превращений, путях использования в деятельности человека; приобретение студентами знаний об общих закономерностях химических превращений, природе и свойствах дисперсных систем, роли физико-химических и адсорбционных процессов в технологии молока и молочных продуктов; получение студентами знаний об основных законах физической и коллоидной химии; о природе различных групп дисперсных систем и процессов, протекающих в них, теоретических основ физико-химических методов анализа сырья и готовой продукции.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОПОП

- **2.1.** Учебная дисциплина (модуль) «Органическая и физколлоидная химия» относится *к обязательной части Б.1. Б11.* и осваивается в 3 семестре(ах). Дисциплина (модуль) встраивается в структуру ОПОП ВО (последовательность в учебном плане) как с точки зрения преемственности содержания, так и с точки зрения непрерывности процесса формирования компетенций выпускника.
- **2.2.** Для изучения данной учебной дисциплины (модуля) необходимы следующие знания, умения, навыки, формируемые предшествующей учебной дисциплиной «Неорганическая и аналитическая химия», а также курсом химии в средней школе.

Знания: место химии в ряду других естественных дисциплин, ее значение в жизни современного общества. Основные понятия и законы химии, строение атомов и молекул, основные квантово-механические представления об образовании химической связи, основные классы органических веществ, номенклатура, основы физической и коллоидной химии

Умения: прогнозировать и обосновывать свойства веществ; раскрыть причинноследственные связи между строением и свойствами веществ; получать ответы на вопрос почему протекают химические реакции, используя представления о структуре вещества, термодинамических аспектах, окислительно-восстановительных процессах; проводить химическую идентификацию неорганических и органических соединений; осуществлять в лабораторных условиях выделение и исследование химических свойств веществ.

Навыки: техники безопасности при выполнении работ в лабораториях органической, физической и коллоидной химии, регистрации и обработки результатов химических экспериментов, методов отбора материала для теоретических занятий и лабораторных работ.

2.3. Последующие учебные дисциплины (модули) и (или) практики, для которых необходимы знания, умения, навыки, формируемые данной учебной дисциплиной (модулем):

- Биологическая химия
- Ветеринарная фармакология. Токсикология
- Цитология, гистология и эмбриология
- Гигиена животных

- Ветеринарно-санитарная экспертиза

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Процесс освоения дисциплины (модуля) направлен на формирование элементов следующей(их) компетенции(ий) в соответствии с ФГОС ВО и ОПОП ВО по данному направлению подготовки / специальности:

общепрофессиональной(ых) (ОПК)

ОПК-1. Способен определять биологический статус и нормативные клинические показатели органов и систем организма животных

ОПК-2. Способен интерпретировать и оценивать в профессиональной деятельности влияние на физиологическое состояние организма животных природных, социально-хозяйственных, генетических и экономических факторов

Таблица 1 – Декомпозиция результатов обучения

Код	Планируемые результаты обучения по дисциплине (модулю)					
и наименование	планируемые результаты обучения по дисциплине (модулю)					
	Знать (1)	Уметь (2)	Владеть (3)			
компетенции ОПК-1. Способен	ИОПК 1.1.1. Знает:	ИОПК 1.2.1 Умеет:	ИОПК 1.3.1.			
определять	технику	собирать и	Владеет:			
биологический	безопасности и	анализировать	практическими			
статус и	правила личной	анамнестические	навыками по			
нормативные	*		самостоятельному			
клинические	гигиены при обследовании	· _ · _ ·	•			
показатели органов и	животных, способы	лабораторные и функциональные	проведению клинического			
*	их фиксации; схемы	исследования	обследования			
_	клинического	_	животного с			
животных	исследования	необходимые для определения	применением			
	животного и порядок	биологического	классических			
	исследования	статуса животных.	методов			
	отдельных систем	статуса животных.	исследований.			
	организма;		исследовании.			
	методологию					
	распознавания патологического					
	процесса					
ОПК-2. Способен	ОПК 2.1.1. Знает:	ОПК 2.2.1. Умеет:	ОПК 2.3.1. Владеет:			
интерпретировать и	экологические	использовать	представлением о			
оценивать в	факторы	экологические	возникновении			
профессиональной	окружающей среды,	факторы	живых организмов,			
деятельности	их классификацию и	окружающей среды	уровнях организации			
влияние на	характер	и законы экологии в	живой материи, о			
физиологическое	взаимоотношений с	с/х производстве;	благоприятных и			
состояние организма	живыми	применять	неблагоприятных			
животных	организмами;	достижения	факторах, влияющих			
природных,	основные	современной	на организм; основой			
социально-	экологические	микробиологии и	изучения			
хозяйственных,	понятия, термины и	ЭКОЛОГИИ	экологического			
генетических и	законы биоэкологии;	микроорганизмов в	познания			
экономических	межвидовые	животноводстве и	окружающего мира,			
факторов	отношения	ветеринарии в целях	законов развития			
т Г	животных и	профилактики	природы и общества;			
1	A. I. Dolling II	профилантин	природы и обществи,			

Код	Планируемые резу	льтаты обучения по дис	циплине (модулю)
и наименование компетенции	Знать (1)	Уметь (2)	Владеть (3)
	растений, хищника и	инфекционных и	навыками
	жертвы, паразитов и	инвазионных	наблюдения,
	хозяев;	болезней и лечения	сравнительного
	экологические	животных;	анализа,
	особенности	использовать методы	исторического и
	некоторых видов	экологического	экспериментального
	патогенных	мониторинга при	моделирования
	микроорганизмов;	экологической	воздействия
	механизмы влияния	экспертизе объектов	антропогенных и
	антропогенных и	АПК и производстве	экономических
	экономических	с/х продукции;	факторов на живые
	факторов на	проводить оценку	объекты; чувством
	организм животных.	влияния на организм	ответственности за
		животных	свою профессию.
		антропогенных и	
		экономических	
		факторов.	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Объём дисциплины (модуля) составляет 3 зачётных(ые) единиц(ы), в том числе 36 часов(а), выделенных на контактную работу обучающихся с преподавателем (из них [указывается по видам учебных занятий в соответствии с учебным планом] 18 часов(а) — лекции, 18 часов(а) — лабораторные работы), и 36 часов(а) — на самостоятельную работу обучающихся.

Таблица 2 – Структура и содержание дисциплины (модуля)

Раздел, тема дисциплины	стр	Контактная работа (в часах)		Самост. работа		Форма текущего контроля успеваемости,	
(модуля)	Семестр	Л	ПЗ	ЛР	КР	СР	форма промежуточной аттестации [по семестрам]
Тема 1. Теоретические основы органической химии.	3	2	2			4	Контрольная работа 1 Собеседование Тестирование
Тема 2. Углеводороды		2	2			4	Контрольная работа 1 Собеседование Тестирование
Тема 3. Кислородосодержащие органические соединения		2	2			4	Контрольная работа 1 Собеседование Тестирование
Тема 4. Азотосодержащие		2	2			4	Контрольная работа 1

Раздел, тема дисциплины	стр	Контактная работа (в часах)		Самост. работа		Форма текущего контроля успеваемости,	
(модуля)	Семестр	Л	ПЗ	ЛР	КР	СР	форма промежуточной аттестации [по семестрам]
органические соединения							Собеседование Тестирование
Тема 5. Основы термодинамики		2	2			4	Контрольная работа 2 Собеседование
Тема 6. Дисперсионные системы. Термодинамика растворов.		2	2			4	Контрольная работа 2 Собеседование
Тема 7. Коллоидные растворы. Микрогетерогенные системы.		2	2			4	Собеседование
Тема 8. Электрохимические процессы.		2	2			4	Контрольная работа 2 Собеседование
Тема 9. Закон действия масс и гетерогенные процессы.		2	2			4	Контрольная работа 3 Собеседование
Итого		18	18			36	Экзамен

Примечание: Л – лекция; ПЗ – практическое занятие, семинар; ЛР – лабораторная работа; КР – курсовая работа; СР – самостоятельная работа.

Таблица 3 — Матрица соотнесения разделов, тем учебной дисциплины (модуля) и формируемых компетенций

и формируемых компетенции						
Раздел, тема	Коп во	Кол-во Код компетенции				Общее
дисциплины (модуля)	часов	ОПК-1	ОПК-2			количество компетенций
Тема 1. Теоретические основы органической химии.	8	+	+			2
Тема 2. Углеводороды	8	+	+			2
Тема 3. Кислородосодержащие органические соединения	8	+	+			2
Тема 4. Азотосодержащие органические соединения	8	+	+			2
Тема 5. Основы термодинамики	8	+	+			2
Тема 6. Дисперсионные системы. Термодинамика	8	+	+			2

Раздел, тема	Кол-во	К	Общее		
дисциплины (модуля)	часов	ОПК-1	ОПК-2		количество компетенций
растворов.					
Тема 7. Коллоидные растворы. Микрогетерогенные системы.	8	+	+		2
Тема 8. Электрохимические процессы.	8	+	+		2
Тема 9. Закон действия масс и гетерогенные процессы.	8	+	+		2
Итого	72				

Краткое содержание каждой темы дисциплины (модуля)

1. Теоретические основы органической химии.

Предмет и место органической химии в профессиональной подготовке специалистов для ветеринарии. Теория строения органических соединений А.М. Бутлерова. Явление и виды изомерии органических соединений. Гомологические ряды, номенклатура и классификация органических соединений. Электронная структура атома углерода в органических соединениях. Гибридизация электронных орбиталей. Химические связи в органических соединениях. Взаимное влияние атомов в молекуле и электронные эффекты. Пространственная структура и виды изомерии. Основные принципы реакционной способности: классификация реакций и реагентов в органической химии; электронные эффекты.

2. Углеводороды

Особенности строения, изомерия и сравнительная реакционная способность алканов, алкенов и алкинов. Реакции радикального замещения в ряду алканов и реакции электрофильного присоединения в ряду алкенов. Окисление и полимеризация алкенов и алкинов.

Циклоалканы: Особенности строения и реакционная способность в зависимости от величины цикла.

Диеновые углеводороды: Особенности строения и реакционная способность.

Ароматические углеводороды. Понятие об ароматичности. Строение бензола, гомологический ряд бензола. Получение бензола и его гомологов. Физические свойства. Химические свойства. Реакции электрофильного замещения: галогенирование, нитрование, сульфирование, алкилирование, ацилирование. Ориентирующее влияние заместителей в реакциях замещения бензольного ядра. Реакции присоединения: гидрирование, галогенирование. Окисление бензола и его гомологов.

3. Кислородосодержащие органические соединения

Кислотность и основность органических соединений. Физические и химические свойства спиртов: кислотно-основные свойства, реакции нуклеофильного замещения, реакции элиминирования, реакции окисления. Двух- и трехатомные спирты. Фенолы. Ароматические спирты.

Классификация соединений, содержащих карбонильную группу. Номенклатура и изомерия. Способы получения. Физические и химические свойства.

Классификация карбоновых кислот. Кислотные свойства. Монокарбоновые кислоты: номенклатура и изомерия, способы получения, физические и химические свойства.

Дикарбоновые кислоты: номенклатура и изомерия, способы получения, физические и химические свойства.

Углеводы. Классификация моноз. Стереоизомерия моноз. Циклические формы. Таутомерия. Свойства моноз. Олигосахариды. Полисахариды. Сравнительная характеристика строения и свойств полисахаридов.

3. Азотосодержащие органические соединения

Амины: номенклатура и изомерия. Амины – органические основания.

Аминокислоты: номенклатура и изомерия, кислотно-основные свойства. Природные аминокислоты: классификация, номенклатура, физические и химические свойства. Качественные реакции на аминокислоты.

Белки: строение молекул, свойства, роль в организме. Качественные реакции на белки.

4. Основы термодинамики.

Энергетика и направление протекания химических процессов. Внутренняя и энтальпия энергия веществ. Стандартные условия. Тепловой эффект химических реакций при постоянном давлении и при постоянном объеме. Теплота образования и теплота сгорания вещества. Закон Гесса. Энтропия. Изменение энтропии при химических процессах и фазовых переходах. Энергия Гиббса. Направление протекания химических процессов. Термохимические расчеты. Зависимость теплового эффекта реакции от температуры. Теплоемкость. Зависимость теплоемкости вещества от температуры

5. Дисперсионные системы. Термодинамика растворов.

Классификация дисперсионных систем. Идеальные, реальные и совершенные растворы. Свойства разбавленных растворов неэлектролитов. Осмотическое давление разбавленных растворов неэлектролитов. Давление пара разбавленных растворов неэлектролитов. Первый закон Рауля. Температура замерзания и кипения растворов неэлектролитов. Эбуллиоскапическая и криоскапическая константы. Второй закон Рауля.

Растворы сильных электролитов. Изотонический коэффициент. Степень диссоциации сильных электролитов. Активная конценрация ионов сильных электролитов. Ионная сила. Коэффициент активности.

6. Коллоидные растворы. Микрогетерогенные системы.

Способы получения лиофобных коллоидов: диспергационные и конденсационные методы. Оптические и электрические свойства коллоидных растворов. Строение мицеллы, двойной электрический слой. Агрегативная и кинетическая устойчивость коллоидных растворов. Коагуляция.

Микрогетерогенные системы: общая характеристика эмульсий, пен, суспензий и аэрозолей. Особенности растворов высокомолекулярных соединений.

7. Электрохимические процессы

Значение реакций окисления-восстановления в анализе. Стандартный водородный электрод. Стандартные электродные и окислительно-восстановительные потенциалы. Направление окислительно-восстановительных реакций. Подбор эффективных окислителей и восстановителей для конкретных случаев анализа. Влияние рН среды и концентраций редокс-формы на протекание реакций.

8. Закон действия масс и гетерогенные процессы

Произведение растворимости. Методика вычисления растворимости веществ по величине произведения растворимости. Влияние одноименных ионов на растворимость электролитов.

Солевой эффект. Дробное осаждение. Условие образование и растворение осадков. Превращение одних малорастворимых электролитов в другие. Условие протекания реакций обмена.

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕПОДАВАНИЮ И ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Указания для преподавателей по организации и проведению учебных занятий по дисциплине (модулю)

Лекционные и практические занятия проводятся 1 раз в две недели. Промежуточный контроль знаний предусматривает собеседования, тестирование, контрольные работы.

Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине:

- 1. Ипполитов Е.Г. Физическая химия: Учебник для студ. высш. учеб. заведений / Е.Г. Ипполитов, А.В. Артемов, В.В. Батраков. Под ред. Е.Г. Ипполитова. М.: Издательский центр «Академия», 2005.-448 с.
- 2. Иванов В.Г. Органическая химия: Учеб. пособие для студ. высш. учеб. заведений / В.Г. Иванов, В.А. Горленко, О.Н. Гева. М.: Мастерство, 2003. 624 с.
- 3. Иванов В.Г. и др. Практикум по органической химии: Учеб. пособие для студ. высш. пед. учеб. заведений / В.Г. Иванов, О.Н. Гева, Ю.Г. Гаверова. М.: Издательский центр «Академия», 2000.-288 с.

5.2. Указания для обучающихся по освоению дисциплины (модулю)

Таблица 4 – Содержание самостоятельной работы обучающихся

Вопросы, выносимые	Кол-во	Форма работы
на самостоятельное изучение	часов	Форма расоты
Тема 1. Теоретические основы органической	4	Контрольная
химии.		работа 1
Теория строения органических соединений		Собеседование
А.М. Бутлерова. Взаимное влияние атомов в		Тестирование
молекуле и электронные эффекты.		
Пространственная структура и виды изомерии.		
Тема 2. Углеводороды	4	Контрольная
Циклоалканы: Особенности строения и		работа 2
реакционная способность в зависимости от		Собеседование
величины цикла. Диеновые углеводороды:		
Особенности строения и реакционная		
способность.		
Тема 3. Кислородосодержащие органические	4	Контрольная
соединения		работа 2
Углеводы. Классификация моноз.		Собеседование
Стереоизомерия моноз. Циклические формы.		
Таутомерия. Свойства моноз. Олигосахариды.		
Полисахариды. Сравнительная характеристика		
строения и свойств полисахаридов.		
Тема 4. Азотосодержащие органические	4	Собеседование
соединения		
Качественные реакции на аминокислоты.		
Качественные реакции на белки.		
Тема 5. Основы термодинамики	4	Контрольная
Изменение энтропии при химических процессах и		работа 2

Вопросы, выносимые	Кол-во	
на самостоятельное изучение	часов	Форма работы
Тема 1. Теоретические основы органической	4	Контрольная
химии.		работа 1
Теория строения органических соединений		Собеседование
А.М. Бутлерова. Взаимное влияние атомов в		Тестирование
молекуле и электронные эффекты.		1
Пространственная структура и виды изомерии.		
фазовых переходах. Энергия Гиббса. Направление		Собеседование
протекания химических процессов.		
Термохимические расчеты. Зависимость теплового		
эффекта реакции от температуры. Теплоемкость.		
Зависимость теплоемкости вещества от температуры		
Тема 6. Дисперсионные системы.	4	Контрольная
Термодинамика растворов		работа 3
Классификация дисперсионных систем. Идеальные,		Собеседование
реальные и совершенные растворы.		
Растворы сильных электролитов. Изотонический		
коэффициент. Степень диссоциации сильных		
электролитов. Активная конценрация ионов		
сильных электролитов. Ионная сила. Коэффициент		
активности. Тема 7. Коллоидные растворы.	4	Контрольная
Микрогетерогенные системы.	4	работа 1
Оптические и электрические свойства		Собеседование
коллоидных растворов. Строение мицеллы,		Тестирование
двойной электрический слой.		тестирование
=		
Микрогетерогенные системы: общая		
характеристика эмульсий, пен, суспензий и		
аэрозолей. Особенности растворов		
высокомолекулярных соединений.	4	Varama
Тема 8. Электрохимические процессы	4	Контрольная
Значение реакций окисления-восстановления в		работа 2
анализе. Подбор эффективных окислителей и		Собеседование
восстановителей для конкретных случаев		
анализа.	4	10
Тема 9. Закон действия масс и гетерогенные	4	Контрольная
процессы		работа 2
Влияние одноименных ионов на растворимость		Собеседование
электролитов. Дробное осаждение. Условие		
протекания реакций обмена.		

[Примечание: данная таблица заполняется в соответствии с таблицей 2]

5.3. Виды и формы письменных работ, предусмотренных при освоении дисциплины (модуля), выполняемые обучающимися самостоятельно: тестирование, контрольные работы, конспектирование лекций.

6. ОБРАЗОВАТЕЛЬНЫЕ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

6.1. Образовательные технологии

Таблица 5 – Образовательные технологии, используемые при реализации учебных занятий

Раздел, тема		Форма учебного занятия	
дисциплины (модуля)	Лекция	Практическое занятие,	Лабораторная
		семинар	работа
Тема 1. Теоретические основы	Обзорная	Фронтальный опрос,	Не
органической химии.	лекция	выполнение практических	предусмотрено
		заданий, тематические	
		дискуссии	
Тема 2. Углеводороды	Обзорная	Тематические дискуссии,	Не
	лекция	анализ конкретных	предусмотрено
		ситуаций	
Тема 3. Кислородосодержащие	Обзорная	Фронтальный опрос,	Не
органические соединения	лекция	выполнение практических	предусмотрено
		заданий, тематические	
T	0.7	дискуссии	**
Тема 4. Азотосодержащие	Обзорная	Тематические дискуссии,	Не
органические соединения	лекция	анализ конкретных	предусмотрено
T	07	ситуаций	
Тема 5. Основы	Обзорная	Фронтальный опрос,	
термодинамики	лекция	выполнение практических заданий, тематические	
Тема 6. Дисперсионные	Обзорная	дискуссии Тематические дискуссии,	He
системы. Термодинамика	лекция	анализ конкретных	предусмотрено
растворов.	лекции	ситуаций	предусмотрено
Тема 7. Коллоидные растворы.	Обзорная	Мозговой штурм	Не
Микрогетерогенные системы.	лекция	iviosi oboli mrijpii	предусмотрено
Тема 8. Электрохимические	Обзорная	Фронтальный опрос,	Не
процессы.	лекция	выполнение практических	предусмотрено
	,	заданий, тематические	1.0
		дискуссии	
Тема 9. Закон действия масс и	Обзорная	Тематические дискуссии,	Не
гетерогенные процессы.	лекция	анализ конкретных	предусмотрено
		ситуаций	

6.2. Информационные технологии

- использование возможностей интернета в учебном процессе (рассылка заданий, предоставление выполненных работ, ответы на вопросы, ознакомление обучающихся с оценками и т.д.));
- использование электронных учебников и различных сайтов (например, электронных библиотек, журналов и т.д.) как источников информации;
 - использование возможностей электронной почты преподавателя;
- использование средств представления учебной информации (электронных учебных пособий и практикумов, применение новых технологий для проведения очных (традиционных) лекций и семинаров с использованием презентаций и т.д.);
- использование интегрированных образовательных сред, где главной составляющей являются не только применяемые технологии, но и содержательная часть, т.е. информационные ресурсы (доступ к мировым информационным ресурсам, на базе которых строится учебный процесс);
- использование виртуальной обучающей среды (LMS Moodle «Электронное образование»)

6.3. Программное обеспечение, современные профессиональные базы данных и информационные справочные системы

6.3.1. Программное обеспечение

Наименование программного обеспечения	Назначение
Adobe Reader	Программа для просмотра
	электронных документов
Платформа дистанционного обучения LMS Moodle	Виртуальная обучающая
платформа дистанционного обучения слуг мооспе	среда
Mozilla FireFox	Браузер
Microsoft Office 2013,	Пакет офисных программ
Microsoft Office Project 2013, Microsoft Office Visio 2013	
7-zip	Архиватор
Microsoft Windows 7 Professional	Операционная система
Kaspersky Endpoint Security	Средство антивирусной
	защиты
Google Chrome	Браузер
Notepad++	Текстовый редактор
OpenOffice	Пакет офисных программ
Opera	Браузер
Paint .NET	Растровый графический
	редактор
Microsoft Security Assessment Tool. Режим доступа:	Программы для
http://www.microsoft.com/ru-ru/download/details.aspx?id=12273	информационной
(Free)	безопасности
Windows Security Risk Management Guide Tools and Templates.	
Режим доступа: http://www.microsoft.com/en-	
us/download/details.aspx?id=6232 (Free)	
WinDjView	Программа для просмотра
	файлов в формате DJV и
	DjVu

6.3.2. Современные профессиональные базы данных и информационные справочные системы

<u>Универсальная справочно-информационная полнотекстовая база данных периодических</u> изданий ООО «ИВИС»

http://dlib.eastview.com

Uмя пользователя: AstrGU

Пароль: AstrGU

Электронные версии периодических изданий, размещённые на сайте информационных ресурсов

www.polpred.com

Электронный каталог Научной библиотеки АГУ на базе MARK SQL НПО «Информ-систем» https://library.asu.edu.ru/catalog/

Электронный каталог «Научные журналы АГУ»

https://journal.asu.edu.ru/

Корпоративный проект Ассоциации региональных библиотечных консорциумов (АРБИКОН) «Межрегиональная аналитическая роспись статей» (МАРС) — сводная база данных, содержащая полную аналитическую роспись 1800 названий журналов по разным отраслям знаний. Участники проекта предоставляют друг другу электронные копии отсканированных статей из книг, сборников, журналов, содержащихся в фондах их

библиотек

http://mars.arbicon.ru

Справочная правовая система КонсультантПлюс.

Содержится огромный массив справочной правовой информации, российское и региональное законодательство, судебную практику, финансовые и кадровые консультации, консультации для бюджетных организаций, комментарии законодательства, формы документов, проекты нормативных правовых актов, международные правовые акты, правовые акты, технические нормы и правила.

http://www.consultant.ru

Единое окно доступа к образовательным ресурсам

http://window.edu.ru

Министерство науки и высшего образования Российской Федерации

https://minobrnauki.gov.ru

Министерство просвещения Российской Федерации

https://edu.gov.ru

Федеральное агентство по делам молодежи (Росмолодёжь)

https://fadm.gov.ru

Федеральная служба по надзору в сфере образования и науки (Рособрнадзор)

http://obrnadzor.gov.ru

Сайт государственной программы Российской Федерации «Доступная среда»

http://zhit-vmeste.ru

Российское движение школьников

https://рдш.рф

Электронная библиотечная система IPRbooks

www.iprbookshop.ru

Электронно-библиотечная система ВООК.ru

https://book.ru

Электронная библиотечная система издательства ЮРАЙТ, раздел «Легендарные книги». www.biblio-online.ru, https://urait.ru/

Электронная библиотека «Астраханский государственный университет» собственной генерации на платформе ЭБС «Электронный Читальный зал — БиблиоТех» https://biblio.asu.edu.ru

Учётная запись образовательного портала АГУ

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Паспорт фонда оценочных средств

При проведении текущего контроля и промежуточной аттестации по дисциплине (модулю) «Органическая и физколлоидная химия» проверяется сформированность у обучающихся компетенций, указанных в разделе 3 настоящей программы. Этапность формирования данных компетенций в процессе освоения образовательной программы определяется последовательным освоением дисциплин (модулей) и прохождением практик, а в процессе освоения дисциплины (модуля) — последовательным достижением результатов освоения содержательно связанных между собой разделов, тем.

Таблица 6 – Соответствие разделов, тем дисциплины (модуля), результатов обучения по дисциплине (модулю) и оценочных средств

Контролируемый раздел, тема дисциплины	Код	Наименование
(модуля)	контролируемой	оценочного
	компетенции	средства

Контролируемый раздел, тема дисциплины	Код	Наименование
(модуля)	контролируемой	оценочного
(модули)	компетенции	средства
Тема 1. Теоретические основы органической	ОПК-1, ОПК-2	Контрольная
химии.		работа 1
		Собеседование
		Тестирование
Тема 2. Углеводороды	ОПК-1, ОПК-2	Контрольная
		работа 1
		Собеседование
		Тестирование
Тема 3. Кислородосодержащие органические	ОПК-1, ОПК-2	Контрольная
соединения		работа 1
		Собеседование
		Тестирование
Тема 4. Азотосодержащие органические	ОПК-1, ОПК-2	Контрольная
соединения		работа 1
		Собеседование
		Тестирование
Тема 5. Основы термодинамики	ОПК-1, ОПК-2	Контрольная
		работа 2
		Собеседование
Тема 6. Дисперсионные системы. Термодинамика	ОПК-1, ОПК-2	Контрольная
растворов.		работа 2
		Собеседование
Тема 7. Коллоидные растворы.	ОПК-1, ОПК-2	Собеседование
Микрогетерогенные системы.		
Тема 8. Электрохимические процессы.	ОПК-1, ОПК-2	Контрольная
		работа 2
		Собеседование
Тема 9. Закон действия масс и гетерогенные	ОПК-1, ОПК-2	Контрольная
процессы.		работа 3
		Собеседование

7.2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Таблица 7 – Показатели оценивания результатов обучения в виде знаний

Шкала оценивания	Критерии оценивания		
5 «отлично»	демонстрирует глубокое знание теоретического материала, умение обоснованно излагать свои мысли по обсуждаемым вопросам, способность полно, правильно и аргументированно отвечать на вопросы, приводить примеры		
4 «хорошо»	демонстрирует знание теоретического материала, его последовательное изложение, способность приводить примеры, допускает единичные ошибки, исправляемые после замечания преподавателя		
3 «удовлетворительно»	демонстрирует неполное, фрагментарное знание теоретического материала, требующее наводящих вопросов преподавателя, допускает существенные ошибки в его изложении, затрудняется в приведении примеров и формулировке выводов		

Шкала оценивания	Критерии оценивания		
2 «неудовлетворительно»	демонстрирует существенные пробелы в знании теоретического материала, не способен его изложить и ответить на наводящие вопросы преподавателя, не может привести примеры		

Таблица 8 – Показатели оценивания результатов обучения в виде умений и владений

Шкала оценивания	Критерии оценивания
	демонстрирует способность применять знание теоретического
5	материала при выполнении заданий, последовательно и правильно
«отлично»	выполняет задания, умеет обоснованно излагать свои мысли и
	делать необходимые выводы
	демонстрирует способность применять знание теоретического
4	материала при выполнении заданий, последовательно и правильно
«хорошо»	выполняет задания, умеет обоснованно излагать свои мысли и
«морошо»	делать необходимые выводы, допускает единичные ошибки,
	исправляемые после замечания преподавателя
	демонстрирует отдельные, несистематизированные навыки,
3	испытывает затруднения и допускает ошибки при выполнении
«удовлетворительно»	заданий, выполняет задание по подсказке преподавателя,
	затрудняется в формулировке выводов
2	не способен правильно выполнить задания
«неудовлетворительно»	

7.3. Контрольные задания и иные материалы, необходимые для оценки результатов обучения по дисциплине (модулю)

Раздел «Теоретические основы органической химии»

Вопросы для собеседования

- 1. Теория строения органических соединений А.М. Бутлерова.
- 2. Электронная структура атома углерода в органических соединениях. Химические связи в органических соединениях.
- 3. Взаимное влияние атомов в молекуле и электронные эффекты.
- 4. Пространственная структура и виды изомерии.
- 5. Классификация органических соединений. Номенклатура.

Раздел «Углеводороды»

- 1. Алканы. Особенности строения, изомерия и реакционная способность.
- 2. Алкены. Особенности строения, изомерия и реакционная способность.
- 3. Алкины. Особенности строения, изомерия и реакционная способность
- 4. Реакции радикального замещения в ряду алканов.
- 5. Реакции электрофильного присоединения в ряду алкенов.
- 6. Окисление и полимеризация алкенов и алкинов.
- 7. Циклоалканы: Особенности строения и реакционная способность в зависимости от величины цикла.
- 8. Диеновые углеводороды: Особенности строения и реакционная способность.
- 9. Газ, полученный при сжигании 5,6 л (н.у.) смеси этана и пропана, плотность которой по водороду равна 19,9, пропустили через 20% раствор гидроксида натрия массой 160 г. Определите массовую долю веществ в образовавшемся растворе.

- 10. Газ, полученный при сжигании 5,6 л (н.у.) смеси этана и пропана, плотность которой по водороду равна 19,9, пропустили через 20% раствор гидроксида натрия массой 160 г. Определить массовые доли веществ в исходной смеси.
- 11. При сжигании 4,1 г углеводорода состава C_nH_{2n-2} образовалось 6,8 л оксида углерода (IV). Определить формулу соединения и написать его изомеры.
- 13. Смесь бутана и бутена-2 массой 5,28 г обесцветили 32 г раствора брома в ССІ₄ (массовая доля брома 10%). Найдите массу бутана в смеси, изобразите структурные формулы геометрических изомеров бутена-2.
- 14. Приведите уравнения соответствующих реакций:

Этилен \rightarrow Ацетилен \rightarrow Бензол \rightarrow Этилбензол \rightarrow n-Хлорэтилбензол

Этилен
$$\rightarrow$$
 Ацетилен \rightarrow Бензол \rightarrow Этилбензол \rightarrow n-Хлорэтилбензон CH_3 — CH = CH_2 \xrightarrow{HBr} \xrightarrow{NaOH} \xrightarrow{B} $\xrightarrow{PCI_5}$ \xrightarrow{NaOH} \xrightarrow{E} \xrightarrow{NaOH} \xrightarrow{E} \xrightarrow{RaOH} \xrightarrow{E} \xrightarrow{E}

Раздел «Кислородосодержащие органические соединения»

Вопросы для собеседования

- 1. Физические и химические свойства спиртов: кислотно-основные свойства, реакции нуклеофильного замещения, реакции элиминирования, реакции окисления.
- 2. Двух- и трехатомные спирты.
- 3. Фенолы. Ароматические спирты.
- 4. Альдегида и кетоны. Номенклатура и изомерия. Способы получения. Физические и химические свойства.
- 5. Карбоновые кислоты. Кислотные свойства. Монокарбоновые кислоты: номенклатура и изомерия, способы получения, физические и химические свойства.
- 6. Дикарбоновые кислоты: номенклатура и изомерия, способы получения, физические и химические свойства.
- 7. Углеводы. Классификация моноз. Стереоизомерия моноз. Циклические формы. Таутомерия. Свойства моноз.
- 8. Олигосахариды. Классификация олигосахаридов. Физические и химические свойства.
- 9. Полисахариды. Сравнительная характеристика строения и свойств полисахаридов.
- 10. Для гидролиза к смеси этиловых эфиров уксусной и муравьиной кислот массой 25 г был прибавлен раствор гидроксида натрия ($\rho = 1,22$) объемом 65,67 мл с ω %(NaOH) = 20%. Избыток щелочи после окончания гидролиза был нейтрализован 1 М серной кислотой объемом 50 мл. Определите массовую долю (в %) эфиров в исходной смеси.
- 11. При сплавлении натриевой соли одноосновной органической кислоты с гидроксидом натрия выделилось 11,2 л (н.у.) газообразного органического соединения, которое при нормальных условиях имеет плотность 1,965 г/л. Определите, сколько граммов соли вступило в реакцию, и какой газ выделился.
- 12. В смесь этилового и пропилового спиртов массой 16,6 г поместили избыток натрия, при этом выделился водород (н.у.) объемом 3,36 л. Каков состав исходной смеси? Какая масса этой смеси потребуется для того, чтобы выделившимся газом восстановить до амина нитробензол массой 24,6 г?
- 13. Приведите уравнения соответствующих реакций

Карбид алюминия \rightarrow метан \rightarrow этан \rightarrow этанол \rightarrow уксусная кислота \rightarrow хлоруксусная кислота Метан \rightarrow Ацетилен \rightarrow Этаналь \rightarrow Этанол \rightarrow Диэтиловый эфир

Этилен \rightarrow Ацетилен \rightarrow Бензол \rightarrow Этилбензол \rightarrow n-Хлорэтилбензол \rightarrow n-Хлорбензойная кислота

Карбид кальция \to ацетилен \to этаналь \to уксусная кислота \to ацетат натрия \to метан Пропаналь \to пропанол \to пропан \to пропанол \to пропановая кислота \to пропионат натрия \to этан \to бромэтан \to этанол

Раздел «Азотосодержащие органические соединения»

Вопросы для собеседования

- 1. Амины: номенклатура и изомерия. Амины органические основания.
- 2. Аминокислоты: номенклатура и изомерия, кислотно-основные свойства.
- 3. Природные аминокислоты: классификация, номенклатура, физические и химические свойства.
- 4. Качественные реакции на аминокислоты.
- 5. Белки: строение молекул, свойства, роль в организме.
- 6. Качественные реакции на белки.
- 7. На нейтрализацию смеси массой 50 г, состоящей из бензола, фенола, анилина пошло 49,7 мл 17% HCl (ρ = 1,08). При взаимодействии такой же массы смеси с избытком бромной воды образовался осадок массой 99,1 г. Определить массовые доли веществ в исходной смеси.
- 8. Установите формулу соединения, при сжигании 10 г которого образовалось 3,672 л CO₂, 1,863 л азота, 4,426 г воды. Плотность паров данного соединения по воздуху равна 2,103.
- 9. Смесь пиридина и анилина массой 16,5 г обработали 66,8 мл раствора соляной кислоты с массовой долей 14% (плотность 1,07 г/мл). для нейтрализации смеси потребовалось добавить 7,5 г триэтиламина. Вычислите массовые доли солей в образовавшемся растворе.
- 10. Приведите уравнения соответствующих реакций

Ацетилен \rightarrow бензол \rightarrow нитробензол \rightarrow анилин \rightarrow 2,4,6-трихлоранилин

Карбид кальция \to ацетилен \to уксусная кислота \to хлоруксусная кислота \to аминоуксусная кислота \to дипептид

Бензол \rightarrow этилбензол \rightarrow бензойная кислота \rightarrow м-нитробензойная кислота

$$CH_{3}CH_{2}CH_{3} \xrightarrow[ofsyy]{Cl_{2}} A \xrightarrow[cnupt]{KOH} B \xrightarrow[cnupt]{Br_{2}} 2 NaOH NaNH_{2} CH_{3}J$$

Вопросы для тестирования «Теоретические основы органической химии», «Углеводороды», «Кислородосодержащие органические соединения», «Азотосодержащие органические соединения»

№ 1

- 1. Алкены можно отличить от алканов с помощью:
- 1) бромной воды; 2) медной спирали; 3) этанола; 4) лакмуса.
- 2. Акролеин образуется при взаимодействии глицерина с:
- 1) с фосфорной кислотой; 2) с гидросульфатом калия; 3) с металлическим натрием; 4) с этилатом натрия.
- 3. Параформ продукт полимеризации
- 1) этаналя; 2) формальдегида; 3) метанола; 4) ацетона.
- 4. Хитин, подобно целлюлозе выполняет опорную функцию у насекомых и ракообразных (роговые оболочки). Какой моносахарид является мономером хитина?
- 1) β-глюклпираноза; 2) N-ацетил-β-глюкозамин; 3) N-ацетил-α-глюкопираноза.
- 5. Укажите продукты, образующиеся при гидролизе лецитина?

- 1) Глицерин + жирные кислоты; 2) сфингозин + жирная кислота + H_3PO_4 + холин; 3) глицерин + жирные кислоты + H_3PO_4 + холин; 4) высокомолекулярный спирт + жирная кислота.
- 6. Каким процессом вызвано прогоркание жиров?
- 1) окислительной полимеризацией; 2) гидролизом; 3) свободнорадикальным окислением; 4) полимеризацией.
- 7. Что такое биуретовая реакция?
- 1) Реакция образования биурета из мочевины; 2) реакция образования комплексной медной соли с биуретом; 3) реакция аминокислот с оксидом меди; 4) реакция образования биполярного иона аминокислот.
- 8. Ацетилхолин это:
- 1) аминоспирт; 2) сложный эфир; 3) простой эфир; 4) соль уксусной кислоты.
- 9. В состав рибонуклеиновых кислот не входит:
- 1) урацил; 2) гуанин; 3) тимин; 4) цитозин.
- 10. Аминокислота лизин является:
- 1) нейтральной, 2) кислой, 3) основной, 4) оксиаминокислотой, 5) аминокислотой с гидрофобным радикалом.

№ 2

- 1. Укажите общую формулу гомологического ряда алкадиенов.
- 1) C_nH_{2n+2} ; 2) C_nH_{2n} ; 3) C_nH_{2n-2} ; 4) C_nH_{2n-4} ; 5) C_nH_{2n-6} .
- 2. С помощью какого реагента можно выделилось анилин из его смеси с бензолом и фенолом?
- 1) NaOH; 2) C₂H₅OH; 3) HCl; 4) CCl₄; 5) Br₂.
- 3. Укажите число всех возможных изомеров гексана, напишите их структурные формулы, назовите их.
- 1) 3; 2) 4; 3) 5; 4) 6; 5) 7.
- 4. Закончите уравнение реакции

$$CH \equiv C - CH_3 + H_2O \xrightarrow{Hg2+} \rightarrow$$

Назовите, чье имя носит эта реакция.

- 1) реакция Вюрца ; 2) реакция Коновалова ; 3) реакция Зинина ; 4) реакция Кучерова ; 5) реакция Зелинского.
- **5.** Составьте уравнение реакций: $CH_4 \rightarrow X \rightarrow C_6H_6$

Определите вещество Х.

- 1) CO₂; 2) C₂H₂; 3) CH₃OH; 4) CH₃Br; 5) HCHO.
- 6. Какое из перечисленных соединений образует при полимеризации каучук? Напишите уравнение реакции.
- 1) этаналь; 2) 2-бутен; 3) дивинил; 4) этилен; 5) бензол.
- **7.** Укажите , какое название соответствует соединению Z в следующих превращениях : C_2H_2 — $^{H2O, Hg}$ \longrightarrow X $\stackrel{H2}{\longrightarrow}$ Y $\stackrel{Na}{\longrightarrow}$ Z
- 1) пропионат натрия; 2) ацетат натрия; 3) этилат натрия; 4) формиат натрия; 5) бутан.

- **8.** Органическое соединение содержит 84,51% углерода и 15,49% водорода по массе . Определите формулу этого вещества , если относительная плотность его паров по воздуху равна 4,9.
- 1) C_8H_{18} ; 2) $C_{10}H_{22}$; 3) $C_{11}H_{24}$; 4) C_9H_{20} ; 5) C_6H_{6} .
- **9.** В ходе каталитического гидрирования этиленового углеводорода C_nH_{2n} израсходовано 672 мл (н.у.) водорода . Определите формулу этого алкена , если при бромировании такого же количества этого углеводорода получено 6,48 г дибромида .
- 1) C_2H_4 ; 2) C_3H_6 ; 3) C_4H_8 ; 4) C_5H_{10} ; 5) C_6H_{12} .
- **10.** Смесь бензола и циклогексана массой 3,98 г обесцвечивают 160 г бромной воды с массовой долей 2%. Какой объем (н.у.) воздуха необходим для сжигания 20 г этой же смеси , если объемная доля кислорода в воздухе равна 21%?
- 1) 48 л; 2) 75 л; 3) 124 л; 4) 196л; 5) 212 л.

.No 3

- 1. Укажите общую формулу гомологического ряда ароматических углеводородов.
- 1) C_nH_{2n} ; 2) C_nH_{2n+2} ; 3) C_nH_{2n-2} ; 4) C_nH_{2n-6} ; 5) $C_nH_{2n+1}OH$.
- 2. Какое соединение обесцвечивает водный раствор перманганата на холоде ?
- 1) бензол; 2) толуол; 3) фенол; 4) циклогексен; 5) циклогексан.
- **3.** Укажите число всех возможных изомеров гептана , напишите их структурные формулы , назовите их.
- 1) 5; 2) 6; 3) 7; 4) 8; 5) 9.
- 4. Закончите уравнение реакции

 $C_2H_5Br + NaOH \rightarrow$

Назовите, чье имя носит эта реакция.

- 1) реакция Вюрца; 2) реакция Коновалова; 3) реакция Зинина; 4) реакция Кучерова; 5) реакция Зелинского.
- **5.** Составьте уравнение реакций: $C_6H_6 \rightarrow X \rightarrow C_6H_5NH_2$

Определите вещество Х.

- 1) C_6H_{12} ; 2) $C_6H_5CH_3$; 3) $C_6H_5NO_2$; 4) C_6H_5OH ; 5) C_6H_5COOH .
- **6.** Какое из перечисленных соединений может вступить в реакцию с уксусной кислотой? Напишите уравнение реакции.
- 1) метан; 2) этилен; 3) этаналь; 4) этанол; 5) нитробензол.
- **7.** Укажите, какое название соответствует соединению Z в следующих превращениях : $CH_3CH_2CH_2OH {}^{H2SO4 . \, 170 \, C} \rightarrow X {}^{HCl} \rightarrow Y {}^{NaOH \, , \, H2O} \rightarrow Z$
- 1) пропионат натрия; 2) пропаналь; 3) пропанол-1; 4) пропанол-2; 5) глицерин.
- **8.** При сгорании 11,4 г углеводорода образовалось 16,2 г воды и оксид углерода (IV). Определите объем (н.у.) израсходованного кислорода.
- 1) 30 л; 2) 28 л; 3) 26 л; 4) 24 л; 5) 22л.
- **9.** Смесь этана и этилена объемом 1 л (н.у.) обесцветила 200 г бромной воды с массовой брома 2,4 %. Определите массовую долю этана в смеси.

- 1) 34; 2) 0,42; 3) 0,51; 4) 0,62; 5) 0,72.
- **10.** При сжигании гомолога бензола массой 3,18 г получили оксид углерода (IV) ,при пропускании которого в избыток раствора гидроксида кальция образовался осадок 24 г. Определите формулу этого углеводорода.
- 1) C_6H_6 ; 2) C_7H_8 ; 3) C_8H_{10} ; 4) C_9H_{12} ; 5) $C_{10}H_{14}$.

No 4

- 1. Укажите общую формулу гомологического ряда алкенов.
- 1) C_nH_{2n+2} ; 2) C_nH_{2n+1} ; 3) C_nH_{2n} ; 4) C_nH_{2n-2} ; 5) C_nH_{2n-6} .
- 2. С помощью какого реагента можно отличить этилен от ацетилена?
- 1) раствор KMnO₄; 2) Br₂; 3) Ag₂O(NH₃); 4) C₂H₅OH; 5) CHCl₃.
- 3. Укажите число всех возможных изомерных алкенов , имеющих формулу C_5H_{10} , напишите их структурные формулы , назовите их.
- 1) 3; 2) 4; 3) 5; 4) 6; 5) 7.
- 4. Закончите уравнение реакции

$$3CH \equiv CH \xrightarrow{C, 600 C} \rightarrow$$

Назовите, чье имя носит эта реакция.

- 1) реакция Вюрца; 2) реакция Коновалова; 3) реакция Зинина; 4) реакция Кучерова; 5) реакция Зелинского.
- **5.** Составьте уравнения реакций: $C_2H_2 \rightarrow X \rightarrow CH_3COOH$ Определите вещество X.
- 1) C₂H₅; 2) C₂H₅OH; 3) CH₃CHO; 4) C₂H₅Br₄; 5) C₂H₅Br₂.
- 6. Какое из соединений может вступить в реакцию с соляной кислотой?
- 1) хлорметан; 2) метиламин; 3) этаналь; 4) нитробензол; 5) этанол
- 7. Укажите , какое название соответствует соединению Z в следующих превращениях : CH_4 — $^{1500\,C}$ \to X — $^{H2O,\,Hg}$ \to Y— $^{Ag2O\,,\,NH3}$ \to Z
- 1) метаналь; 2) этанол; 3) этаналь; 4) уксусная кислота; 5) ацетат аммония.
- **8.** Из природного газа объемом 11 л (н.у.) получили 11 г хлорметана. Определите объемную долю метана в природном газе, если выход хлорметана равен 50%.
- 1) 0,89; 2) 0,91; 3) 0,93; 4) 0,95; 5) 0,97.
- **9.** Алкен присоединил количественно 24,3 г бромоводорода . При нагревании полученного продукта с водным раствором гидроксида калия с выходом продукта реакции получено 10,8 г спирта . Определите формулу исходного алкена .
- 1) C_2H_4 ; 2) C_3H_6 ; 3) C_4H_8 ; 4) C_5H_{10} ; 5) C_6H_{12} .
- **10.** Газ , полученный при взаимодействии 19,2 г бензола с избытком брома в присутствии катализатора до бромбензола , растворили в воде . Определите объем раствора с массовой долей гидроксида калия 0,08 и плотностью 1,092 г/мл , необходимый для нейтрализации полученного раствора .
- 1) 36 мл; 2) 54 мл; 3) 72 мл; 4) 112 мл; 5) 158 мл.

Комплект заданий для контрольной работы 1

Тема «Основы строения органических соединений. Углеводороды», «Кислородосодержащие органические соединения», «Азотосодержащие органические соединения»

Вариант № 1

- 1. На нейтрализацию смеси массой 50 г, состоящей из бензола, фенола, анилина пошло 49,7 мл 17% HCl (ρ = 1,08). При взаимодействии такой же массы смеси с избытком бромной воды образовался осадок массой 99,1 г. Определить массовые доли веществ в исходной смеси.
- 2. При сжигании 4,1 г углеводорода состава C_nH_{2n-2} образовалось 6,8 л оксида углерода (IV). Определить формулу соединения и написать его изомеры.
- 3. Приведите уравнения соответствующих реакций:

Метан \rightarrow Ацетилен \rightarrow Этаналь \rightarrow Этанол \rightarrow Диэтиловый эфир

Этилен \to Ацетилен \to Бензол \to Этилбензол \to n-Хлор
этилбензол \to n-Хлорбензойная кислота

Вариант № 2

- 1. 68 г смеси бензола, толуола и этилбензола обработали подкисленным раствором КМпО₄. При этом образовалось 36,6 г бензойной кислоты и выделилось 2,24 л углекислого газа. Определить массовую долю веществ в исходной смеси.
- 2. При окислении 2 г диальдегида избытком аммиачного раствора оксида серебра образовалось 8,64 г осадка. Установить строение альдегида, если известно, что в его молекуле есть четвертичный атом углерода.
- 3. Приведите уравнения соответствующих реакций:

$$CH_3-CH=CH_2 \xrightarrow{CI_2} A \xrightarrow{NaOH} B \xrightarrow{HBr} C \xrightarrow{KCN} D \xrightarrow{Br_2} E$$

$$500°C$$

4. Карбид кальция \to ацетилен \to этаналь \to уксусная кислота \to ацетат натрия \to метан Пропаналь \to пропанол \to пропан \to пропандиол-1,2 \to метиловый эфир пропандиола-1,2

Раздел «Основы термодинамики»

- 1. На какую величину отличается изменение энтальпии от изменения внутренней энергии системы? В каких случаях $\Delta H = \Delta U$ и $Q_V = Q_P$?
- 2. Зависит ли изменение энтальпии системы от температуры?
- 3. Какие системы называют конденсированными? Почему для них обычно опускают ограничивающие условия V=const и p=const?
- 4. Какой закон является основным законом термохимии? Дайте его формулировку.
- 5. Перечислите следствия, вытекающие из закона Гесса. Для каких определений они используются в термохимических расчетах?

- 6. Какой функцией состояния характеризуется тенденция системы к достижению так называемого вероятного состояния, которому соответствует максимальная беспорядочность распределения частиц?
- 7. Энтропия связана с термодинамической вероятностью реализации данного состояния соотношением S=klnW. Укажите, что означает в этом уравнении каждая из величин.
- 8. В изолированной системе все самопроизвольные процессы протекают в сторону увеличения беспорядка. Как изменяется при этом энтропия?
- 9. Как изменяется энтропия системы с повышением температуры, в реакциях синтеза и разложения веществ?
- 10. Как влияет на энтропию системы образование газообразных продуктов?
- 11. Чему равна энтропия идеального кристалла при абсолютном нуле?
- 12. Как изменяется энтропия системы при испарении, конденсации, увеличении давления, фазовых переходах?
- 13. Почему при плавлении вещества температура остается постоянной несмотря на то, что в это время теплота к системе подводится?
- 14. Какими одновременно действующими факторами определяется направленность химического процесса?
- 15. Что называют энергией Гиббса? Каким образом изменение этой величины (ΔG) указывает на термодинамическую возможность или невозможность самопроизвольного протекания процесса? Какое значение ΔG определяет равновесное состояние системы?
- 16. При каком соотношении ΔH и $T\Delta S$: а) система находится в равновесии, б) химический процесс направлен в сторону экзотермической или эндотермической реакции?
- 17. Чем объясняется возможность эндотермических реакций и почему она возрастает с увеличением температуры?
- 18. Энтальпийным или энтропийным фактором определяется направление химических реакций при очень низких температурах?

Раздел «Дисперсионные системы. Термодинамика растворов»

Вопросы для собеседования

- 1. Растворы. Растворимость. Насыщенные растворы.
- 2. Осмотическое давление разбавленных растворов неэлектролитов.
- 3. Давление пара разбавленных растворов неэлектролитов. Первый закон Рауля.
- 4. Температура замерзания и кипения растворов неэлектролитов. Второй закон Рауля.
- 5. Классификация дисперсионных систем. Идеальные, реальные и совершенные растворы.
- 6. Свойства разбавленных растворов неэлектролитов.
- 7. Растворы сильных электролитов. Изотонический коэффициент.
- 8. Степень диссоциации сильных электролитов.
- 9. Активная концентрация ионов сильных электролитов. Ионная сила. Коэффициент активности.

Раздел «Коллоидные растворы. Микрогетерогенные системы»

- 1. Способы получения лиофобных коллоидов: диспергационные и конденсационные методы.
- 2. Оптические и электрические свойства коллоидных растворов.
- 3. Строение мицеллы, двойной электрический слой.
- 4. Агрегативная и кинетическая устойчивость коллоидных растворов.
- 5. Коагуляция.
- 6. Микрогетерогенные системы: общая характеристика эмульсий, пен, суспензий и аэрозолей.
- 7. Особенности растворов высокомолекулярных соединений.

Раздел «Закон действия масс и гетерогенные процессы»

Вопросы для собеседования

- 1. Понизится или повысится растворимость AgBr при добавлении в раствор: a) $0.1M \ KBr; \ 6)$ $0.1M \ KNO_3$?
- 2. Одинакова ли растворимость MgF_2 и $BaCO_3$, если известно, что их произведения растворимости близки между собой?
- 3. Растворимость, каких соединений $BaSO_4$, $CaCO_3$, AgCl, ZnS, $(MgOH)_2CO_3$ не зависит от кислотности раствора? Почему?
- 4. В каком растворителе растворимость $Mg(OH)_2$ максимальна и в каком минимальна: а) в воде; б) в растворе аммиака; в) в растворе аммонийной соли; г) в растворе минеральной кислоты?
- 5. В каком растворе будет более полное осаждение бария дихроматом: а) в 2M CH₃COOH; б) в 2 M HCl; в) в 0,2 M CH₃COONa?
- 6. В каком растворе растворимость гидроксида магния больше: c pH = 7.0 или pH = 10.0?
- 7. При каком рН (2,0; 7,0; 8,0; 9,0) растворимость СоЅ наибольшая ?При каком наименьшая?
- 8. Почему $CaCO_3$ легко растворяется, а CaC_2O_4 не растворяется в разбавленной уксусной кислоте, хотя оба соединения имеют близкие ΠP ?
- 9. К 20,0мл 0,08М Na_3 AsO₄ прилили 30,0 мл 0,12 М AgNO₃. Какая масса мышьяка останется в растворе ?
- 10. Какой объём 0,1M $(NH_4)_2C_2O_4$ следует добавить в 1 л насышенного водного раствора CaC_2O_4 для понижения его растворимости до 0,1 мг/л?
- 11. Какова концентрация ионов магния в растворе Mg(OH)2, если рН 11,5?
- 12. При какой концентрации ионов магния начнётся выпадение осадка $Mg(OH)_2$ из раствора, имеющего рН 8,7.
- 13. Раствор содержит 0,02 моль/л Br^- и 0,003 моль/л I^- . Показать расчётом, можно ли разделить эти ионы при помощи осаждения солью свинца?
- 14. При каком минимальном pH начнёт выпадать осадок: a) FeS из 0,1M FeSO₄; б) CoS из 0,02 M CoCl₂; в) MnS из 0,1M MnCl₂ при насыщении раствора сероводородом ($C(H_2S)$ = 0,1моль/л).
- 15. Образуется ли осадок: а) Al(OH)₃, если в 0,02 M AlCl₃ создать pH = 3,2; б) Fe(OH)₃, если в 0,05 M FeCl₃ создать pH = 2,5?

Раздел «Электрохимические процессы»

- 1. Какие окислительно-восстановительные системы называют гетеро- и гомогенными? Что является причиной возникновения скачка потенциала в системах первого типа? Удается ли экспериментально определить его абсолютное значение, относительное значение?
- 2. Чем должны отличаться друг от друга две окислительно-восстановительные системы для того, чтобы их можно было использовать при составлении гальванического элемента?
- 3. Какую информацию содержит электрохимический ряд стандартных электродных потенциалов о сравнительной активности ВФ и ОФ металлов? Почему он дает возможность оценить ЭДС гальванических элементов, составленных из любых пар металлов?
- 4. Почему водородный электрод в паре с медным полуэлементом является анодом, а в паре с цинком католом?
- 5. Из четырех металлов Ag, Cu, Au и Sn выберите те пары, которые дают наименьшую и наибольшую ЭДС составленного из них гальванического элемента.
- 6. По какой формуле можно найти электродный потенциал металла при любых температуре и концентрации раствора его соли, если для него известно значение ϕ °? При каких условиях $\phi = \phi$ °?

- 7. Какие изменения концентраций растворов солей на электроде-окислителе и электродевосстановителе приводят к увеличению и уменьшению ЭДС?
- 8. Почему в качестве окислителя используется хром $VI\$ в составе иона $Cr_2O_7^{2-}$, а не в составе иона CrO_4^{2-} , и почему окисление хрома $VI\$ проводится в щелочной среде?
- 9. Какие электрохимические процессы протекают на электродах при электролизе расплавов электролитов? Приведите примеры.
- 10. Из каких процессов слагается общая реакция электрохимического разложения вещества?
- 11. Чем отличается электролиз водных растворов электролитов от электролиза их расплавов? Какие ионы и молекулы, находящиеся в водных растворах солей могут восстанавливаться на катоде и окисляться на аноде? Напишите уравнения соответствующих реакций.
- 12. При каких условиях и из каких солей, возможно, получить с помощью электролиза одновременно шелочь и кислоту?
- 13. Дайте формулировку законов Фарадея и их математические выражения. Что называют числом Фарадея F? Чему равна эта величина в кулонах и ампер-часах?
- 14. Всегда ли масса выделившегося на электроде вещества соответствует количеству прошедшего через электролит электричества? Является ли это нарушением законов Фарадея? Что называют выходом по току \Вт\?
- 15. Ток силой 4А пропускался через электролизер в течение 16 мин. и 5 с. За это время на катоде выделился свинец массой 4,14 г из расплава одного из его соединений. Определите, было ли это соединение двух- или четырехвалентного свинца.
- 16. При электролизе растворов $AgNO_3$, $CuSO_4$, $BiCl_3$, находящихся в последовательно соединенных электролизерах, выделилось 5,4г серебра. Найдите массу выделившихся при этом меди и висмута.
- 17. Вычислить константу равновесия окислительно-восстановительной реакции

 $MnO_2 + H_2C_2O_4 + 2H^+ = Mn^{2+} + 2CO_2 + 2H_2O.$

18. Вычислить ЭДС гальванического элемента:

 $Ag \mid AgNO_3 (0,001 \text{ моль/л}) \mid KI (1 \text{ моль/л}) AgI (т) \mid Ag.$

19. Вычислить потенциал водородного электрода в растворе, полученном смешением 20 мл 0.5~M~HC1 и $30~мл~0.6~M~NH_3$.

Комплект заданий для контрольной работы 2 Тема «Основы термодинамики», «Дисперсионные системы. Термодинамика растворов», «Электрохимические процессы»

Вариант № 1

- **1.** Вычислить потенциал никелевого электрода в растворе, содержащем 0,1 моль/л NiCl₂ и 2,6 моль/л NH₃.
- **2.** Вычислить константу равновесия окислительно-восстановительной реакции $HAsO_2 + I_2 + 2H_2O = H_3AsO_4 + 2I^- + 2H^+$.
- **3.** Раствор, содержащий 16,05 г нитрата бария в 500 г воды, кипит при 100,122°C. Рассчитайте изотонический коэффициент этого раствора.
- **4.** Определите стандартную энтальпию образования PH_3 , исходя из уравнения: $2PH_3(\Gamma) + 4O_2(\Gamma) = P_2O_3(\kappa) + 3H_2O(\kappa)$ $\Delta H^\circ = -2360\kappa Дж$

Вариант № 2

- **1.** Вычислить потенциал серебряного электрода в растворе, содержащем 0,1 моль/л AgNO₃ и 1 моль/л KCN.
- **2.** Вычислить константу равновесия окислительно-восстановительной реакции $3N_2H_4 + 2BrO_3^- = 3N_2 + 2Br^- + 6H_2O$.
- **3.** Изотонический коэффициент водного раствора соляной кислоты равен 1,66 (ω = 6,8%). Вычислите температуру замерзания этого раствора.
- 4. Исходя из теплового эффекта реакции:

 $3CaO(\kappa)+P_2O_5(\kappa)=Ca_3(PO_4)_2(\kappa)$ $\Delta H^\circ=-739\kappa Дж,$ Определить ΔH° образования ортофосфата кальция.

Комплект заданий для контрольной работы 3 Тема «Закон действия масс и гетерогенные процессы» Вариант № 1

- 1. Произведение растворимости $SrSO_4$ равно $2.8*10^{-7}$. вычислить растворимость этой соли в молях на литр.
- 2. Во сколько раз растворимость CaC_2O_4 в $0{,}01M$ растворе $(NH_4)_2C_2O_4$ меньше растворимости его в чистой воде?
- 3. Образуется ли осадок сульфида кадмия, если к 0,1M раствору соли $[Cd(NH_3)_4]Cl_2$ добавили равный объем 0,1M раствора сульфида натрия?
- 4. Образуется ли осадок сульфида кадмия, если к раствору 0,1M $K_2[Cd(CN)_4]$ добавить сульфид-ион, концентрация которого составляет $2*10^{-6}$ моль/л?

Вариант № 2

- 1. Произведение растворимости $Pb_3(PO_4)_2^{-1}$ равно $1,5*10^{-32}$. вычислить растворимость этой соли в граммах на литр.
- 2. Рассчитайте, образуется ли осадок FeS, если к 0.2M раствору $K_4[Fe(CN)_6]$ добавить равный объем 0.02 M раствора Na_2S .
- 3. Растворимость AgI при $t=25^{\circ}\text{C}$ равна $2,865*10^{-6}\text{г/л}$. Вычислите произведение растворимости AgI.
- 4. Вычислить растворимость $Zn(OH)_2$ в 1л 1М раствора NH_3 , если в растворе образуются только комплексные ионы $[Zn(NH_3)_4]^{2+}$.

Перечень вопросов и заданий, выносимых на экзамен

- 1. Напишите возможные изомеры веществ, имеющих состав: C_3H_6O , $C_3H_6O_2$, $C_3H_6O_3$. Назовите их.
- 2. Напишите структурные формулы следующих соединений: а) альдотетроза; б) кетотетроза; в) альдопентоза; г) альдогектоза (фуранозная форма и открытая форма); д) кетогектоза; е) альдогептоза.
- 3. При осторожном окислении глюкозы (бромной водой или разбавленной азотной кислотой) образуется кислота. Напишите ее структурную формулу, а также формулы γ и δ -
- 4. Напишите структурную формулу гексозы, зная, что оксинитрил, полученный из нее при действии синильной кислоты, после омыления и восстановления иодистоводородной кислотой образует метилбутилуксусную кислоту.
- 5. Альдогектоза была подвергнута осторожному окислению бромной водой и образовавшееся соединение обработано перекисью водорода в присутствии ацетата железа. Напишите схему указанных превращений, имея в виду, что процесс окисления перекисью водорода сопровождается распадом цепи с отщеплением карбоксильной группы.
- 6. Как можно удлинить цепь атомов углерода в моносахариде? Напишите схему превращений: а) альдотетрозы в альдопентозу; б) альдопентозы в альдогексозу.
- 7. Как можно укоротить цепь атомов углерода в моносахариде? Напишите схему превращений: а) альдогексозы в альдопентозу; б) альдопентозы в альдотетрозу.
- 8. Каково положение кислородного мостика в молекуле метилгалактозида, если после его метилирования при помощи диметилсульфата, последующей обработки соляной кислотой и окисления полученного при этом соединения образуется триметоксиглутаровая кислота?
- 9. Сколько стереоизомерных форм возможно для альдотетроз? Напишите проекционные формулы (по Фишеру) этих стереоизомеров.

- 10. Напишите проекционные формулы: а) α -D и β -D-глюкозы; б) α -D и β -D-маннозы; в) α -D и β -D-галактозы.
- 11. Напишите формулы возможных таутомерных форм дисахаридов: а) мальтозы; б) лактозы. К какому типу дисахаридов эти вещества относятся?
- 12. Приведите кольчато-цепную таутомерию соединений на примере глюкозы.
- 13. Приведите кольчато-цепную таутомерию соединений галактозы.
- 14. Приведите кольчато-цепную таутомерию соединений рибозы.
- 15. Приведите кольчато-цепную таутомерию соединений дезоксирибозы.
- 16. Приведите кольчато-цепную таутомерию соединений ксилозы.
- 17. Приведите кольчато-цепную таутомерию соединений маннозы.
- 18. Приведите кольчато-цепную таутомерию соединений L-арабинозы.
- 19. Приведите кольчато-цепную таутомерию соединений лактозы.
- 20. Приведите кольчато-цепную таутомерию соединений целлобиозы.
- 21. Приведите кольчато-цепную таутомерию соединений мальтозы.
- 22. Напишите уравнения реакций, характерных для глюкозы, выделив отдельно реакции, характеризующие глюкозу: а) как альдегид; б) как многоатомный спирт.
- 23. Какие бывают виды брожения глюкозы? Напишите уравнения реакций.
- 24. Напишите уравнения реакций: а) пентаацетат глюкозы + NaOH \rightarrow ; б) глюкоза + Cu(OH)₂ \rightarrow ; в) сахароза + Ca(OH)₂ \rightarrow ; г) глюкоза + H₂ \rightarrow . Назовите продукты реакции.
- 25. Изобразите постепенный процесс гидролиза крахмала путем уменьшения числа структурных звеньев в продуктах каждой стадии.
- 26. Напишите уравнения реакций, при которых происходят следующие превращения: сахароза → сахарат кальция → сахароза → фруктоза.
- 27. Как называется вещество A, которое образуется в результате превращений: $CO_2 + H_2O \xrightarrow{\frac{\phiomocumnes}{2}} X_1 \xrightarrow{\frac{6powcemue}{2}} X_2 \xrightarrow{\frac{+O_2}{2}, \kappa amazusamo} X_3 \xrightarrow{\frac{+Cl_2}{2}} A$
- 28. Напишите уравнение реакции образования серебряного зеркала для альдопентозы. Почему пищевой сахар не дает этой реакции, а инвертированный дает?
- 29. Напишите уравнение реакции образования озазона из фруктозы и глюкозы. Какова формула озона, который может быть получен из этого озазона?
- 30. Какие соединения образуются из альдопентозы при действии на нее следующих соединений: а) гидроксиламин; б) амальгама натрия; в) концентрированная азотная кислота.
- 31. Какие соединения образуются из фруктозы при действии на нее: а) амальгамы натрия; б) гидроксиламина; в) уксусного ангидрида?
- 32. Напишите схемы образования: а) 4-(α-D-глюкопиранозил)-D-глюкозы (мальтозы); б) 4-(β-D-галактопиранозил)-D-глюкозы (лактозы). Назовите исходные моносахариды.
- 33. Напишите реакцию получения ацетилцеллюлозы, нитроклетчатки, вискозы.
- 34. Напишите схему реакции, протекающей при действии избытка хлорангидрида уксусной кислоты на мальтозу в ее α-форме.
- 35. Напишите схему взаимодействия (в присутствии HCl как катализатора) α-D-фруктопиранозы с метиловым спиртом. Назовите соединение, которое образуется.
- 36. При окислении 400 г технической глюкозы, содержащей 10% неокисляющихся примесей, было получено 177 г 96%-ного этилового спирта. Рассчитайте, сколько это составляет в процентах от возможного теоретического выхода.
- 37. Сколько граммов молочной кислоты образуется при брожении глюкозы, полученной в результате гидролиза 68,4 г молочного сахара (лактозы) $C_{12}H_{22}O_{11}$? Выход кислоты составляет 70% от теоретически возможного.
- 38. Какой объем CO₂ (н.у.) выделится при спиртовом брожении 5 моль глюкозы?
- 39. Какой объем CO_2 (при н.у.) выделится при полном окислении каждого элементарного звена крахмала?
- 40. На гидролизном заводе за сутки из древесных опилок получают 60 т 96%-ного этилового спирта. Какой объем углекислого газа выделится, если 5% его теряется при утилизации? (Расчет вести на одно элементарное звено целлюлозы).

- 41. Сколько граммов сахарозы подвергается гидролизу, если при взаимодействии с аммиачным раствором оксида серебра выделилось 21,6 г серебра?
- 42. 100 г смеси, содержащей воды и 79,6 г какого-то вещества А, обработали оксидом углерода (IV), полученном при полном сгорании 4,48 л метана (н.у.). В результате получилось 16 г карбоната кальция (считая это количество равным 80% от теоретического выхода). В растворе осталось сладкое вещество, дающее синий раствор при взбалтывании со свежеосажденным гидроксидом меди. Что это за вещество? Какова процентная концентрация исходного вещества А в растворе?
- 43. Сколько глюкозы можно получить из 1 т картофеля, содержащего 22% крахмала, если выход глюкозы составляет 80% от теоретически возможного? (Расчет вести на одно элементарное звено крахмала).
- 44. При переработке крахмала из каждой тонны его получают 200 кг этилового спирта. Какой процент выхода в пересчете на одно элементарное звено это составляет? Каким объемом этилена можно заменить это количество крахмала?
- 45. Сколько 2%-ного раствора нитрата серебра потребуется для восстановления из его аммиачного раствора 1,08 г металлического серебра при взаимодействии с лактозой (альдегидная форма дисахарида)?
- 46. В результате спиртового брожения виноградного сахара, содержащего 20% несахаристых примесей, выделилось 138 г спирта. Сколько виноградного сахара подверглось реакции? Какой объем CO₂ выделился при этом?
- 47. Сколько целлюлозы (расчет на одно элементарное звено) при 96%-ном ее использовании потребуется для получения 42,32 кг этилового спирта, если этот выход составляет 92%?
- 48. Какой объем кислорода образуется при синтезе 1 кг клетчатки?
- 49. Чему равна масса 99%-ного раствора азотной кислоты, идущей на синтез 100 кг тринитроклетчатки?
- 50. Из одной тонны сухих опилок можно получить в среднем около 180 л этанола. Определите массовую долю клетчатки в древесине.
- 51. Рассчитайте массовую долю азота в тринитроклетчатке (ТНК).
- 52. Какая масса глюконата кальция может быть получена из технической глюкозы массой 200 г (в которой 10% несахаристых примесей), если выход соли 80% от теоретически возможного?
- 53. Какой объем водорода (н.у.) (при 90%-ном его использовании) необходим для восстановления глюкозы массой 90 г в шестиатомный спирт (сорбит)?
- 54. Для количественного определения альдоз в присутствии кетоз используют реакцию с иодом и щелочью. Напишите уравнение реакции и вычислите весовое количество глюкозы, находящееся в растворе, если в реакцию вступило 0,254 г иода.
- 55. Какое количество теплоты выделяется при полном окислении 1 моль глюкозы, если известно, что для окисления 1кг ее необходимо 15 632 кДж? Составьте термохимическое уравнение полного окисления глюкозы до CO_2 и воды.
- 56.Напишите уравнения реакций, при помощи которых можно осуществить превращения: $C_2H_6 \rightarrow C_4H_{10} \rightarrow C_4H_8 \rightarrow C_4H_9OH \rightarrow C_4H_8O \rightarrow C_4H_8O_2$. Назовите вещества.
- 57. Какие вещества и в каком количестве получатся из 1 т известняка, содержащего 10% примесей, в результате превращений: $CaCO_3 \rightarrow ? \rightarrow CaC_2 \rightarrow ? \rightarrow CH_3$ -C
- 58. Напишите уравнения реакций, при помощи которых можно осуществить превращения: этан \rightarrow этен \rightarrow этин \rightarrow щавелевая кислота (этандикарбоновая кислота) \rightarrow оксалат кальция.
- 59. Назовите основные направления замены пищевого сырья (жира) для производства мыпа
 - 60. Какой основной продукт реакции А образуется в результате превращений:

CH₃-CH₃
$$\xrightarrow{+Br}$$
 $\xrightarrow{+Br}$ $\xrightarrow{X_1}$ $\xrightarrow{+H_2O}$ $\xrightarrow{X_2}$ $\xrightarrow{+[O]}$ $\xrightarrow{X_3}$ $\xrightarrow{+Ag_2O}$ $\xrightarrow{Ag_2O}$ $\xrightarrow{Ag_2O}$

61. Как получить метиловый эфир метакриловой кислоты (метилметакрилат), исходя из природного газа?

- 62. Напишите уравнения реакций, при помощи которых можно осуществить превращения: а) этилен → этилацетат; б) пропилен → пропилпропионат; в) ацетальдегид → буталиацетат; г) метан →муравьинометиловый эфир; д) бутан → уксусноизоамиловый эфир. Укажите условия их протекания.
- 63. Напишите уравнения реакций получения сложных эфиров глицерина: а) пальмитиновой, масляной и олеиновой кислот; б) уксусной, стеариновой, валериановой кислот (по одной молекуле). Назовите продукты реакции.
 - 64. Напишите формулы возможных изомеров вещества, состав которого С₄H₈O₂.
 - 65. Напишите цис-, транс-изомеры олеиновой кислоты.
- 66. Напишите уравнения реакций, лежащих в основе производства СМС. Назовите: а) сырье и ассортимент продукции; б) приготовление порошков, паст, растворов.
- 67. Напишите уравнения реакций получения соответствующей кислоты из гексана. Назовите кислоту и поясните на примерах, какие свойства характерны для нее.
- 68. Напишите уравнения реакций этерификации путем взаимодействия: а) этилового спирта с муравьиной, уксусной, пропионовой, масляной, валериановой кислотами; б) муравьиной кислоты с метиловым, этиловым, пропиловым, бутиловым, изопропиловым спиртами. Назовите полученные эфиры.
- 69. Напишите уравнения реакций гидролиза (в присутствии едкого натра) эфиров: этилформиата, пропилацетата, изобутилацетата, пропилпропионата, изоамилацетата, бутилпропионата. Назовите продукты реакции.
- 70. Напишите схемы образования триглицеридов кислот: а) стеариновой; б) пальмитиновой; в) олеиновой. Назовите триглицериды.
- 71. Напишите формулы всех изомерных триглицеридов, содержащих остаток стеариновой и 2 остатка олеиновой кислот.
- 72. Выведите структурные формулы одноосновных непредельных кислот $C_4H_6O_2$ с неразветвленной углеродной цепью. Назовите их.
- 73. Напишите уравнения реакций действия на триолеин: а) брома; б) водорода в присутствии катализатора. Объясните значение этих реакций.
- 74. Напишите схему образования триглицерида линолевой кислоты. Объясните процесс высыхания олифы.
- 75. Напишите структурные формулы следующих соединений: а) метакриловая кислота; б) аллилуксусная кислота; в) диметилмалеиновая кислота; г) диметилфумарат; д) триолеин.
- 76. Сколько технического карбида кальция, содержащего 20% примесей, необходимо, что карбидным способом получить 1 л «ледяной» уксусной кислоты (плотностью 1,049 г/мл)?
- 77. Какое количество 35%-ого формалина и воды необходимо, чтобы окислением аммиачным раствором оксида серебра получить 1 кг 20%-ой муравьиной кислоты?
- 78. Какой процентной концентрации образуется раствор кислоты, если 1 моль пропионового альдегида окисляется кислородом воздуха и продукт окисления растворяется в 100 мл воды?
- 79. При полном сжигании 2,3 г паров органического вещества образовалось 1,12 л CO_2 и 0,9 г паров воды. При окислении такого же количества вещества аммиачным раствором оксида серебра выделилось 10,8 г металлического серебра. Определите молекулярную формулу исследуемого вещества, назовите его.
- 80. Какое количество технического сырья, содержащего 60% CaC₂, потребуется для получения «карбидным способом» 200 кг 60%-ой уксусной кислоты, считая, что выход ее составляет 90% от теоретически возможного?
- 81. При взаимодействии 20%-ного раствора уксусной кислоты массой 120 г с метиловым спиртом образовался сложный эфир массой 29,6 г. Какая масса метанола вступила в реакцию?
- 82. При взаимодействии пропионовой кислоты массой 100 г с 14%-ным раствором гидроксида калия массой 400 г образовалась калиевая соль массой 89,6 г (что составляет 80% от теоретического выхода). Сколько массовых долей кислоты прореагировало?

- 83. Для реакции с этиловым спиртом взята уксусная кислота, полученная при каталитическом окислении бутана объемом 56 л (н.у.). Чему равна масса образующегося эфира, считая, что его выход равным 75% от теоретического?
- 84. При взаимодействии 96%-ного раствора этанола объемом 200 мл (плотность 0,8 г/см³) и 60%-ного раствора уксусной кислоты массой 200 г образовался эфир, 0,05 массовых долей которого улетучилось при отгонке. Чему равна масса эфира?
- 85. Сколько кальцинированной соды потребуется для реакции со стеариновой кислотой массой 28,4 г и сколько соответственно образуется стеарата натрия при 90%-ном выходе?
- 86. При гидрировании акриловой кислоты массой 14,4 г был использован водород, полученный при частичном крекинге метана объемом 4 л (н.у.). Какая масса пропионовой кислоты образовалась и какое из исходных веществ взято в избытке?
- 87. При реакции этерификации прореагировал 80%-ный раствор метилового спирта массой 30 г и метакриловая кислота $CH_2=C(CH_3)-COOH$ количеством вещества 0,6 моль. Какова масса полученного эфира (метилметакрилата)?
- 88. Какое количество граммов, молей и молекул продукта реакции можно получить при взаимодействии 240 г 50%-ного раствора уксусной кислоты и 180 мл 96%-ного этилового спирта (плотность 0,8 г/мл)? Выход продукта составляет 80% от теоретически возможного.
- 89. Получено 118,4 г муравьиноэтилового эфира, что составляет 80% от теоретически возможного выхода. Сколько потребовалось для этого граммов кислоты и миллилитров 96%-ого раствора спирта (плотность 0,8 г/мл)?
- 90. Какую массу эфира можно получить, нагревая 15 г уксусной кислоты и 20 г этилового спирта, если выход эфира составляет 70% от теоретического?
- 91. Для гидрогенизации триолеина потребовалось 2,016 м³ водорода (н.у.). Какое количество жира вступило в реакцию? Сколько молей продукта реакции образовалось?
- 92. Какое количество тристеарина потребуется для получения 9,2 кг глицерина, учитывая, что 20% исходного вещества теряется при реакции?
- 93. Достаточно ли будет 120 г 20%-ого раствора муравьиной кислоты, чтобы растворить 50 гранул цинка 90%-ой кислоты (1гранула весит примерно 1,5 г)? Что надо сделать, чтобы реакция прошла полностью?
- 94. Раствор, полученный после нагревания 40,3 г жира (триглицерида), образованного только одной органической кислотой, с 70 мл 20%-ного раствора гидроксида натрия (плотность 1,2 г/мл), потребовал для нейтрализации избытка щелочи 22,9 мл 36,5%-ной соляной кислоты (плотность 1,18 г/мл). Какая кислота входила в состав жира? Какие вещества и в каком количестве получились при реакции жира со щелочью?
- 95. Рассчитайте объем водорода (н.у.), который необходим для превращения 1,5 моль олеиновой кислоты в стеариновую.
- 96. Какова масса продукта реакции (при 80%-ном выходе), полученного при взаимодействии 40%-ного раствора уксусной кислоты объемом 240 мл (плотность $1,05 \text{ г/см}^3$) и 90%-ного метанола объемом 120 мл (плотность $0,7 \text{ г/см}^3$)?
- 97. При гидролизе тристеаринового глицерида количеством вещества 0,5 моль в избытке щелочи образовался глицерин, масса которого оказалась равной 40 г. Сколько жира (%) не подверглось гидролизу?
- 98. Достаточно ли будет для реакции с триолеиновым глицеридом массой 17,86 г того водорода, который может выделится при дегидроциклизации 0,02 моль гексана (если образуется бензол)?
- 99. При гидрогенизации триолеина образовалось 356 кг тристеарина, что составляет 80 % от теоретического выхода. Сколько жидкого жира и водорода вступило вреакцию?
- 100. Сколько граммов стеарата натрия можно получить путем каталитического окисления 300 г стеарина $C_{18}H_{38}$, содержащего 15,3 % неокисляющихся примесей? Выход продукта составляет 90% от теоретически возможного. (Для расчета использовать стехиометрическую схему).

- 101. Напишите уравнения реакций, при которых происходят следующие превращения: пропан \rightarrow пропионовая кислота \rightarrow хлорпропионовая кислота \rightarrow 3-аминопропановая кислота.
- 102. Напишите уравнения реакций, подтверждающих амфотерные свойства аминокислот на примере глицина (аминоуксусной кислоты).
 - 103. Напишите уравнение реакции получения трипептида из β-аминомасляной кислоты.
- 104. Напишите уравнения реакций действия соляной кислоты на: а) глицин; б) аланин; в) глутаминовую кислоту; г) ү-аминомасляную кислоту. Назовите полученные соединения.
- 105. Напишите уравнения реакций КОН с: а) β-аминопропионовой кислотой; б) лизином; в) аланином; г) лейцином. Назовите образующиеся соединения.
- 106. Напишите схемы реакций, при которых образуются: а) метиловый эфир β-аминопропионовой кислоты; б) этиловй эфир аланина; в) изопропиловый у-аминовалериановой кислоты; г) полный метиловый эфир глутаминовой кислоты.
- 107. Напишите уравнения реакций действия азотной кислоты на: а) глицин; б) аланин; в) α-аминомасляную кислоту. Назовите образующиеся соединения.
- 108. Напишите уравнения реакций взаимодйствия следующих соединений: а) глицина и хлористого ацетила; аланина хлорангидрида пропионовой кислоты: б) И в) у-аминовалериановой кислоты и бромангидрида масляной кислоты. Как в общем виде называются реакции этого типа?
- 109. Напишите уравнения реакций ацетилирования при действии уксусного ангидрида на аминокислоты: а) глицин; б) аланин; в) глутаминовую кислоту. Назовите образующиеся соединения.
- уравнения реакций, протекающих при нагревании: 110. Напишите аминовалериановой кислоты; б) β-аминовалериановой кислоты; в) глицина. Назовите образующиеся соединения.
- 111. Напишите уравнения реакций получения аминокислот, исходя: а) из хлормасляной кислоты; б) из γ-бромвалериановой кислоты; в) из α-хлоризомасляной кислоты. Назовите аминокислоты.
- 112. Объясните поведение аминокислот при нагревании: а) глицина; б) β-аминомасляной кислоты; в) у-аминовалериановой кислоты.
- 113. Напишите не менее трех химических превращений аланина по: а) аминогруппе; б) карбоксильной группе.
- 114. Какие соединения образуются при взаимодействии следующих веществ: а) акриловая кислота и аммиак; б) кротоновая кислота и диэтиламин; в) масляная кислота и этиламин?
- 115. Какие соединения образуются при взаимодействии следующих веществ: ацетоуксусный эфир и диметиламин; б) молочная кислота и метиламин: в) диметилфумарат и аммиак?
 - 116. Вещество А получают по схеме:

$$_{\text{CH}_4} \rightarrow X_1 \xrightarrow{+HOH} \rightarrow X_2 \xrightarrow{+[O]} \rightarrow X_3 \xrightarrow{+Cl_2} \rightarrow X_4 \xrightarrow{-+NH_3} \rightarrow A$$

Какое это вещество?

117. Вещество А образуется в результате превращений:

$$C_3H_7OH \xrightarrow{[0]} X_1 \xrightarrow{+[0]} X_2 \xrightarrow{+Cl_2} X_3 \xrightarrow{+NH_3} A$$

Как называется вещество А?

118. Напишите формулы веществ в следующей схеме:

пропин-1
$$\xrightarrow{H_2O(Hg^{2^+})}$$
 \longrightarrow ... $\xrightarrow{NH_3}$ \longrightarrow ... $\xrightarrow{H_2(Pt)}$ \longrightarrow ... $\xrightarrow{HNO_2}$ \longrightarrow ... 119. Напишите формулы веществ в следующей схеме:

$$C_{2}H_{2} \xrightarrow{H_{2}O(Hg^{2^{+}})} \longrightarrow \dots \xrightarrow{HCN} \dots \xrightarrow{H_{2}O(H^{+})} \longrightarrow \dots \xrightarrow{(CH_{3}CO)_{2}O} \longrightarrow \dots$$

120. Предложите схемы следующих синтезов: а) $CH_3COOH \rightarrow глицин;$ б) $CH_2=CH_2 \rightarrow$ аланин.

121. Предложите схемы следующих синтезов: а) $CH \equiv CH \rightarrow NH_2CH_2COOH$; б) N_2H -CH- $COOH \rightarrow CH_3CO$ -NH-CH-CH-CH3

$$CH_3$$
 CH_3

122. Напишите структурные формулы промежуточных и конечных продуктов в следующей схеме:

пропен
$$-1$$
 — $\stackrel{HBr}{=}$ $\stackrel{(ROOR)}{=}$ \rightarrow A — $\stackrel{NH}{=}$ $\stackrel{_3}{\rightarrow}$ B — $\stackrel{NaOH}{=}$ \rightarrow B

123. Напишите структурные формулы промежуточных и конечных продуктов в следующей схеме:

пропин
$$-1 - \frac{H_2O(Hg^{2+})}{} \to A - \frac{NH_3}{} \to B - \frac{H_2(Pt)}{} \to B - \frac{HNO_2}{} \to C$$

124. Напишите формулы промежуточных соединений в следующей схеме:

$$\text{CH}_3\text{CH}_2\text{COOH} \xrightarrow{-Cl_2(p)} A \xrightarrow{-2NH_3} B \xrightarrow{CH_3OH} \xrightarrow{(H^+)} B \xrightarrow{(CH_3CO)_2O} C.$$

Назовите продукт реакции.

125. Напишите формулы промежуточных соединений в следующей схеме:

$$C_{2}H_{2} \xrightarrow{H_{2}O(Hg^{2+})} A \xrightarrow{HCN} \xrightarrow{(NaOH)} B \xrightarrow{H_{2}O(H^{+})} B \xrightarrow{(CH_{3}CO)_{2}O} C$$

Назовите продукт реакции.

- 126. Напишите уравнение реакции образования и строения трипептида тре-лей-цис. Укажите его характер.
- 127. Напишите уравнение реакции образования и строения трипептида гли-арг-три. Укажите его характер.
- 128. Напишите уравнение реакции образования и строения трипептида про-лей-сер. Укажите его характер.
- 129. Напишите уравнение реакции образования и строения трипептида гли-глу-гис. Укажите его характер.
- 130. Напишите уравнение реакции образования и строения трипептида глу-три-вал. Укажите его характер.
- 131. Напишите уравнение реакции образования и строения трипептида сер-цис-тре. Укажите его характер.
- 132. Напишите уравнение реакции образования и строения трипептида сер-цис-тир. Укажите его характер.
- 133. Напишите уравнение реакции образования и строения трипептида ала-мет-глу. Укажите его характер.
- 134. Напишите уравнение реакции образования и строения трипептида три-тир-асп. Укажите его характер.
- 135. Напишите уравнение реакции образования и строения трипептида глу-гис-мет. Укажите его характер.
- 136. Вычислите массу 15%-ного раствора глицина, который можно получить из 15 г уксусной кислоты двухстадийным синтезом с выходом продуктов на каждой стадии, равным 75%.
- 137. При кислотном гидролизе дипептида массой 33 г образовалось только одно вещество хлороводородная соль одной из аминокислот. Масса этой соли 55, 75 г. Какова структура дипептида и его название.
- 138. При щелочном гидролизе 48 г дипептида образовалось только одно вещество натриевая соль одной из аминокислот. Масса этой соли равна 66,6 г. Установите строение дипептида и назовите его.
- 139. При действии на дипептид концентрированной азотной кислоты возникает желтое окрашивание. При гидролизе 3,12 г этого дипептида образовалось 3,3 г одной аминокислоты. Каково строение дипептида? Как он называется?
- 140. При гидролизе 37,8 г трипептида образовалась одна аминокислота массой 45 г. Установите строение трипептида.

- 141. При обработке продуктов гидролиза 3,63 г рибонуклеотида, содержащего 19,28% азота по массе, избытком известковой воды выпало 1,55 г осадка. Установите структурную формулу рубонуклеотида и назовите его.
- 142. Сколько миллилитров 96%-ного этилового спирта (плотность 0,8 г/мл) необходимо затратить на реакцию этерификации с 2 моль β-аминопропионовой кислоты? Сколько эфира образуется (считать выход его равным 90% от теоретически возможного)?
- 143. Какой объем аммиака (н.у.) необходим для получения аминоуксусной кислоты из 18,9 г хлоруксусной кислоты?
- 144. Какой объем аммиака потребуется для реакции с хлоруксусной кислотой массой 18,9 г (реакцию с группой –СООН исключить)? Какой объем воздуха, содержащий 78% азота (по объему), необходим для синтеза требующегося объема аммиака?
- 145. Какое количество вещества и какую соль можно получить, если провести реакцию между гликоколом (аминоуксусной кислотой) массой 15 г с достаточным количеством иодоводородной кислоты?
- 146. Сколько граммов карбида кальция (содержащего 10% примесей) необходимо для получения соответствующими реакциями 2 моль аминоуксусной кислоты?
- 147. Какой объем 90%-ного метанола (плотность 0,8 г/см³) необходим для реакции с аминоуксусной кислотой количеством вещества 2 моль?
- 148. Аминоуксусную кислоту получили из уксусной кислоты массой 24 г с выходом 60%. Какой объем раствора с массовой долей гидроксида натрия 15% и плотностью 1,16 г/мл потребуется для нейтрализации аминоуксусной кислоты?
- 149. Какой минимальный объем аммиака надо пропустить через раствор массой 300 г массовой долей хлоруксусной кислоты 20 % для полного превращения ее в аминоуксусную кислоту? Объем рассчитайте при нормальных условиях.
- 150. Имеется раствор анилина в органическом растворителе массой 10 г. К раствору добавили избыток брома, при этом выпал осадок массой 6,6 г. Определите массовую долю анилина в исходном растворе.

Таблица 9 – Примеры оценочных средств с ключами правильных ответов

		Формулировка задания н определять биологический с нов и систем организма живот	_	Время выполнения (в минутах) с клинические
1.	Задание закрытого типа	Укажите общую формулу гомологического ряда алкадиенов . 1) C_nH_{2n+2} ; 2) C_nH_{2n} ; 3) C_nH_{2n-2} ; 4) C_nH_{2n-4} ; 5) C_nH_{2n-6} .	3) C _n H _{2n-2}	1
2.		Укажите общую формулу гомологического ряда ароматических углеводородов. 2) C_nH_{2n} ; 2) C_nH_{2n-2} ; 3) C_nH_{2n-2} ; 4) C_nH_{2n-6} ; 5) $C_nH_{2n+1}OH$.	4) C _n H _{2n-6}	1
3.		Укажите общую формулу гомологического ряда алкенов. 1) C_nH_{2n+2} ; 2) C_nH_{2n+1} ; 3) C_nH_{2n} ; 4) C_nH_{2n-2} ; 5) C_nH_{2n-6} .	3) C _n H _{2n}	1

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
4.		Параформ - продукт полимеризации 1) этаналя; 2) формальдегида; 3) метанола; 4) ацетона.	2) формальдегида	1
5.		Ацетилхолин – это: 1) аминоспирт; 2) сложный эфир; 3) простой эфир; 4) соль уксусной кислоты.	2) сложный эфир	1
6.	Задание открытого типа	Определите молекулярную формулу вещества, если известно, что массовая доля углерода в нем равна 39,97%, водорода — 6,73%, кислорода — 53,3%. Плотность паров этого вещества по углекислому газу равна 4,091.	Брутто-формула вещества будет иметь вид: $C_xH_yO_z$. На основе закона постоянства состава вещества запишем: $12x$: $1y$: $16z = 39,97$: $6,73$: $53,3$; где 12 , 1 , 16 — относительные атомные массы C , E и E и E	5

№	Тип	Φ	Правильный	Время
п/п	задания	Формулировка задания	ответ	выполнения
			Формула вещества $C_6H_{12}O_6$.	(в минутах)
7.		Вычислите отношение масс и массовые доли элементов в метане СН ₄ .	1) Определим относительную молекулярную массу метана: Mr(CH ₄) = Ar(C) + 4Ar(H) = 12 + 4	5
			* 1 = 16. Отношение масс элементов: m(C): m(H) = 12: 4 = 3: 1. Массовые доли элементов в молекуле: Массовая доля углерода: ω(C) = 12 / 16 = 0,75;	
			Массовая доля водорода: ω (H) = 4 / 16 = 0,25.	
8.		Какое количество теплоты выделяется при сжигании 112м^3 (н.у.) метана, если термохимическое уравнение (ТХУ) реакции горения метана: $\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 \uparrow + 2 \text{ H}_2\text{O} + 890 \text{кДж}$.	$CH_4 + 2O_2 = CO_2 + 2$ $H_2O + 890$ кДж.	5
9.		Как химическим путем выделить 2-бутин из его смеси с 1-бутином?	Смесь следует пропустить через аммиачный раствор оксида серебра. При этом 1-бутин поглотится за счет реакции: $CH_3CH_2C \equiv CH + [Ag(NH_3)_2]OH \rightarrow CH_3CH_2C \equiv CAg\sqrt{+2NH_3} + H_2O$ 2-Бутин не реагирует с аммиачным раствором оксида	5

серебра [Ag(NH ₃) ₂]OH и улетучится в чистом виде. 10. Расположите галогеналкилы в порядке изменения реакционной способности в реакциях, протекающих по S _N 1 механизму: 1-бромпентан, 2-бромпентан, 2-бромпентан, 2-бромпентан, 2-бромпентан) в нашем случае 2-бромпентан, 2-бромпентан) реагируют по этому механизму в полярных растворителях. Первичные алкилгалогениды по данному механизму практически не реагируют, за исключением аллил- и бензилгалогенидов. Таким образом, реакционная способность увеличивается в ряду: 1-бромпентан < 2-бромпентан	№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
По				$[Ag(NH_3)_2]OH$ и улетучится в чистом	·
	10.		порядке изменения реакционной способности в реакциях, протекающих по S_N1 механизму: 1-бромпентан, 2-бромпентан, 2-бром-2-	По S _N 1 механизму реагируют, в первую очередь, третичные галогенопроизводные (в нашем случае 2-бром- 2-метилбутан). Вторичные галогенпроизводные (2-бромпентан) реагируют по этому механизму в полярных растворителях. Первичные алкилгалогениды по данному механизму практически не реагируют, за исключением аллил- и бензилгалогенидов. Таким образом, реакционная способность увеличивается в ряду: 1-бромпентан < 2-бромпентан < 2-бром-	5

ОПК-2. Способен интерпретировать и оценивать в профессиональной деятельности влияние на физиологическое состояние организма животных природных, социально-хозяйственных, генетических и экономических факторов

11.	Задание	Алкены можно отличить от	1) бромной воды	1
	закрытого	алканов с помощью:		
	типа	1) бромной воды; 2) медной		
		спирали; 3) этанола; 4)		
		лакмуса.		
12.		Закончите уравнение реакции	1) реакция Вюрца	1
		$C_2H_5Br + NaOH \rightarrow$	\rightarrow C ₂ H ₅ - C ₂ H _{5 +} 2NaBr	
		Назовите, чье имя носит эта		
		реакция.		
		1) реакция Вюрца; 2) реакция		
		Коновалова; 3) реакция		
		Зинина; 4) реакция Кучерова;		
		5) реакция Зелинского.		
13.		Какое соединение	4) циклогексен	1
		обесцвечивает водный раствор		

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
		перманганата на холоде? 1)бензол; 2) толуол; 3) фенол; 4) циклогексен; 5) циклогексан.		
14.		Какое из перечисленных соединений образует при полимеризации каучук? 1) этаналь; 2) 2-бутен; 3) дивинил; 4) этилен; 5) бензол.	3) дивинил	1
15.		Каким процессом вызвано прогоркание жиров? 1) окислительной полимеризацией; 2) гидролизом; 3) свободнорадикальным окислением; 4) полимеризацией.	2) гидролизом	1
16.	Задание открытого типа	Какое соединение будет иметь более высокую температуру кипения: пропанол, метилэтиловый эфир или пропановая кислота? Ответ обоснуйте.	Температура кипения зависит от наличия водородных связей между молекулами. Чем больше таких связей, тем больше энергии требуется для их разрушения при переводе вещества из жидкого состояния в газообразное. Между молекулами простых эфиров водородные связи не образуются, между молекулами одноатомных спиртов образуется по одной водородной связи, между молекулами одноосновных карбоновых кислот — по две водородные связи. Поэтому самую высокую температуру кипения будет иметь пропановая кислота, а самую низкую — метилэтиловый эфир.	5
17.		Какое соединение будет иметь более высокую температуру кипения: бутанол, бутаналь	метилэтиловыи эфир. Так как в молекулах альдегидов и кетонов в отличие от спиртов нет	5

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
		или бутанон?	подвижных атомов водорода, их молекулы не ассоциированы и температуры кипения их значительно ниже, чем соответствующих спиртов. В целом температуры кипения кетонов немного выше, чем изомерных им альдегидов. Значит, самую высокую температуру кипения будет иметь бутанол, а самую низкую —	(B Mully lux)
18.		Напишите схему превращений, с помощью которых из 3,3,3-трихлорпропена можно получить 3-гидроксипропановую кислоту. Укажите условия проведения реакций.	бутаналь. Реакция присоединения хлороводорода к 3,3,3- трихлорпропену выражается следующим уравнением: ССІ₃СН=СН₂ + HCl → ССІ₃СН=СН₂ Cl. Гидролиз образующегося тетрахлорпроизводного водным раствором КОН дает (после подкисления) гидроксикислоту: ССІ₃СН₂СН₂СІ + 4 КОН → HOOCCH₂CH₂OH + 4 КСІ + Н₂О	5
19.		Объясните, почему: а) пропановая кислота кипит при более высокой температуре, чем пропиловый спирт (т. кип. 140 и 97 °C соответственно); б) температура плавления малоновой (пропандиовой) кислоты существенно выше, чем у пропановой кислоты (т. пл. 134 и -21,5 °C соответственно).	Малоновая кислота относится к дикарбоновым, имеет 2 карбоксильные группы, а пропановая кислота — только одну. Из-за большего числа водородных связей (четыре), которые может образовать малоновая кислота, ее температура плавления выше, чем у пропановой.	5

№ π/π	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
20.		Относительная плотность паров сложного эфира по водороду равна 44. При гидролизе этого эфира образуются два соединения, при сгорании равных количеств которых образуются одинаковые объемы углекислого газа (при одинаковых условиях). Приведите структурную формулу этого эфира.	Общая формула сложных эфиров, образованных предельными спиртами и кислотами, — $C_nH_{2n}O_2$. Значение п можно определить из плотности по водороду: $M(H_2) = 44 * 2 = 88$ г/моль $12n + 2n + 16*2 = 88$ г/моль, откуда $n = 4$, то есть, эфир содержит 4 атома углерода ($C_4H_8O_2$). Поскольку при сгорании спирта и кислоты, образующихся при гидролизе эфира, выделяются равные объемы углекислого газа, то кислота и спирт содержат одинаковое число атомов углерода, по два. Таким образом, искомый эфир образован уксусной кислотой и этанолом и называется этилацетат: $CH_3COOCH_2CH_3$.	5

7.4. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине (модулю)

Таблица 10 – Технологическая карта рейтинговых баллов по дисциплине

1 dollingu 10 1 exhibitori reckun kuptu pentinin obbix ounitob no gneginitime				
Л/п	Контролируемые мероприятия	Количес тво меропри ятий / баллы	Максималь ное количество баллов	Срок представления
		повнои олок		
1.	Тест и Контрольная работа №1	2/15	15	по расписанию
2.	Контрольная работа №2	15	15	по расписанию
3.	Тест и Контрольная работа №3	2/15	15	ПО

Л п/п	Контролируемые мероприятия	Количес тво меропри ятий / баллы	Максималь ное количество баллов	Срок представления
				расписанию
4.	Тест «Теоретические основы органической химии», «Углеводороды»	15	15	по расписанию
5.	Тест «Кислородосодержащие органические соединения»,	15	15	по расписанию
6.	Тест «Азотосодержащие органические соединения»»	15	15	по расписанию
E	Всего		90	-
	Б.	пок бонусов		
7.	Посещение занятий		4	по расписанию
8.	Своевременное выполнение всех заданий		4	по расписанию
9.	Активность на занятии		2	по расписанию
Всего			10	-
I	ІТОГО		100	-

Таблица 11 – Система штрафов (для одного занятия)

Показатель	Балл
Опоздание на занятие	-2
Нарушение учебной дисциплины	-3
Неготовность к занятию	-2
Пропуск занятия без уважительной причины	-3

Таблица 12 — Шкала перевода рейтинговых баллов в итоговую оценку за семестр по дисциплине

Сумма баллов	Оценка по 4-балльной шкале
90–100	5 (отлично)
85–89	
75–84	4 (хорошо)
70–74	
65–69	2 (************************************
60–64	3 (удовлетворительно)
Ниже 60	2 (неудовлетворительно)

При реализации дисциплины (модуля) в зависимости от уровня подготовленности обучающихся могут быть использованы иные формы, методы контроля и оценочные средства, исходя из конкретной ситуации.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

8.1. Основная литература

- 1. Грандберг И.И. Органическая химия: рек. УМО по агрономическому образованию в качестве учебника для студентов ... по направлениям и специальностям агрономического образования. 7-е изд.; перераб. и доп. М.: Дрофа, 2009. 607 с. (40 экз.)
- 2. Кругляков П.М. Физическая и коллоидная химия: Учеб. пособие / П.М. Кругляков, Т.Н. Хаскова. 2-е изд., испр. М.: Высш. шк, 2007. 319 с. (34 экз.)
- 3. Иванов В.Г. Сборник задач и упражнений по органической химии: учеб. пособие для студ. высш. учеб. заведений / В.Г. Иванов, О.Н. Гева, Ю.Г. Гаверова. М.: Издательский центр «Академия», 2007. 320 с. (65 экз.)
- 4. Травень В.Ф., Органическая химия. Т. І / Травень В.Ф. М.: БИНОМ, 2013. 368 с. URL: http://www.studentlibrary.ru/book/ISBN9785996321094.html (ЭБС «Консультант студента»)
- 5. Горленко В.А., Органическая химия. Ч. І, ІІ / В.А. Горленко, Л.В. Кузнецова, Е.А. Яныкина. М.: Прометей, 2012. 294 с. URL: http://www.studentlibrary.ru/book/ISBN9785704223450.html (ЭБС «Консультант студента»)
- 6. Беляев А.П. Физическая и коллоидная химия / А.П. Беляев, В.И. Кучук; под. ред. А.П. Беляева М.: ГЭОТАР-Медиа, 2014. 752 с. URL: http://www.studentlibrary.ru/book/ISBN9785970427668.html (ЭБС «Консультант студента»)

8.2. Дополнительная литература

- 1. Иванов В.Г. Органическая химия: Учеб. пособие для студ. высш. учеб. заведений / В.Г. Иванов, В.А. Горленко, О.Н. Гева. М.: Мастерство, 2003. 624 с. (25 экз.)
- 2. Иванов В.Г. и др. Практикум по органической химии: Учеб. пособие для студ. высш. пед. учеб. заведений / В.Г. Иванов, О.Н. Гева, Ю.Г. Гаверова. М.: Издательский центр «Академия», 2000. 288 с. (76 экз.)
- 3. Семчиков Ю.Д. Высокомолекулярные соединения: Учеб. для вузов / Ю.Д. Семчиков. Н. Новгород: Издательство Нижегородского государственного университета им. Н.И. Лобачевского; М.: Издательский центр «Академия», 2003, 368 с. (32 экз.)
- 4. Ипполитов Е.Г. Физическая химия: Учебник для студ. высш. учеб. заведений / Е.Г. Ипполитов, А.В. Артемов, В.В. Батраков. Под ред. Е.Г. Ипполитова. М.: Издательский центр «Академия», 2005.-448 с. (27 экз.)
- 5. Белик, В.В. Физическая и коллоидная химия: учебник. Доп. Мин-вом образования РФ в качест. учебника для студ. образоват. учреждений сред. проф. образования, обуч. по группе спец. «Химическая технология». 5-е изд.;стереотип. М.: Академия, 2010. 288 с. (32 экз.) 6. Найденко Е.С. Органическая химия: учеб. пособие / Найденко Е.С. Новосибирск: Изд-во НГТУ, 2014. 91 с. URL: http://www.studentlibrary.ru/book/ISBN9785778225138.html (ЭБС «Консультант студента»)
- 7. Хазипов Н.З. Биохимия животных с основами физколлоидной химии / Под ред. Н.З. Хазипова. М.: КолосС, 2013. 328 с. URL: http://www.studentlibrary.ru/book/ISBN9785953208000.html (ЭБС «Консультант студента»)

8.3. Интернет-ресурсы, необходимые для освоения дисциплины (модуля)

Электронно-библиотечная система (ЭБС) ООО «Политехресурс» «Консультант студента». Многопрофильный образовательный ресурс «Консультант студента» является электронной библиотечной системой, предоставляющей доступ через Интернет к учебной литературе и дополнительным материалам, приобретённым на основании прямых д правообладателями. Каталог содержит более 15 000 наименований изданий. www.studentlibrary.ru. Регистрация с компьютеров АГУ

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Материально-техническое обеспечение учебной дисциплины включает в себя лекционную аудиторию, аудиторию для проведения семинарских занятий. Проведение

семинарских занятий сопряжено с применением компьютеров для выполнения поисковой работы, вычислений и работы в информационных системах.

Рабочая программа дисциплины (модуля) при необходимости может быть адаптирована для обучения (в том числе с применением дистанционных образовательных технологий) лиц с ограниченными возможностями здоровья, инвалидов. Для этого требуется заявление обучающихся, являющихся лицами с ограниченными возможностями здоровья, инвалидами, или их законных представителей и рекомендации психолого-медико-педагогической комиссии. Для инвалидов содержание рабочей программы дисциплины (модуля) может определяться также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).