МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева» (Астраханский государственный университет им. В. Н. Татищева)

СОГЛАСОВАНО	УТВЕРЖДАЮ
Руководитель ОПОП	Заведующий кафедрой цифровых
	технологий
А.Н. Марьенко	ов А.Н. Марьенков
«02» июня 2022 г.	«02» июня 2022 г.
РАБОЧАЯ ПРОГРА	АММА ДИСЦИПЛИНЫ (МОДУЛЯ)
«Математические основы информ	ационных технологий и вычислительной техники»
Составитель(и)	Головко Ю.А., к.т.н., доцент кафедры цифровых технологий
Направление подготовки / специальность	09.03.03 ПРИКЛАДНАЯ ИНФОРМАТИКА
Направленность (профиль) ОПОП	ПРИКЛАДНАЯ ИНФОРМАТИКА В

Квалификация (степень)

Форма обучения

Год приёма

Курс

Семестр

СОЦИАЛЬНЫХ НАУКАХ

бакалавр

очная

2022

1

1

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1. Целями освоения дисциплины (модуля) «Математические основы информационных технологий и вычислительной техники» обеспечение подготовки студентов и углубленное изучение основных понятий линейной алгебры и аналитической геометрии, математического анализа, теории вероятностей и математической статистики, численных методов, применяемых при решении прикладных задач, сформировать у студентов теоретические знания, практические навыки по этим разделам математики, возможность применения полученных знаний при решении практических задач.

1.2. Задачи освоения дисциплины (модуля):

- изучение понятийного аппарата, основных теоретических положений и методов математических основ информационных технологий и вычислительной техники;
- получение практических навыков решения профессиональных задач с применением математического аппарата;
- формирование у студентов практических навыков применения инструментальных средств математической обработки данных и моделирования при решении профессиональных задач.

2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОПОП

- **2.1.** Учебная дисциплина (модуль) «Математические основы информационных технологий и вычислительной техники» относится к обязательной части и осваивается в 1 семестре.
- 2.2. Для изучения данной учебной дисциплины (модуля) необходимы следующие знания, умения, навыки, формируемые предшествующими учебными дисциплинами (модулями):
 - Математика (школьный курс);
 - Алгебра и геометрия (школьный курс);
 - Информатика (школьный курс).

Знания: основы элементарной математики (выполнение действий над числами и числовыми выражениями; преобразование буквенных выражений; решение алгебраических уравнений, неравенств, систем уравнений).

Умения: строить графики элементарных функций и множества точек на координатной плоскости, заданные уравнениями и неравенствами; исследовать функции; изображать геометрические фигуры на чертеже; делать дополнительные построения; пользоваться свойствами чисел, функций и их графиков; составлять уравнения, неравенства и находить значения величин, исходя из условия задачи; пользоваться соотношениями и формулами, содержащими модули, степени, корни, логарифмические, тригонометрические выражения.

Навыки: самостоятельной работы с учебной литературой; применения математических навыков в смежных областях; изложения и оформления решения логически правильно, полно и последовательно, с необходимыми пояснениями.

- 2.3. Последующие учебные дисциплины (модули) и (или) практики, для которых необходимы знания, умения, навыки, формируемые данной учебной дисциплиной (модулем):
 - Основы программирования;
 - Системы искусственного интеллекта.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Процесс освоения дисциплины (модуля) направлен на формирование элементов следующей(их) компетенции(ий) в соответствии с $\Phi \Gamma OC$ ВО и ОПОП ВО по данному направлению подготовки / специальности:

б) общепрофессиональной (ых) (ОПК):

Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности (ОПК-1).

Таблица 1 – Декомпозиция результатов обучения

Код	Планируемые результаты обучения по дисциплине (модулю)		
и наименование компетенции	Знать (1)	Уметь (2)	Владеть (3)
ОПК-1:	основы математики,	решать стандартные	навыками
Способен применять	физики,	профессиональные	теоретического и
естественнонаучные	вычислительной	задачи с	экспериментального
и общеинженерные	техники и	применением	исследования
знания, методы	программирования	естественнонаучных	объектов
математического		и общеинженерных	профессиональной
анализа и		знаний, методов	деятельности
моделирования,		математического	
теоретического и		анализа и	
экспериментального		моделирования	
исследования в			
профессиональной			
деятельности			

Код	Планируемые результаты обучения по дисциплине (модулю)		
и наименование компетенции	Знать (1)	Уметь (2)	Владеть (3)
ОПК-1:	ИУК-1.1.1	ИУК-1.2.1	ИУК-1.3.1
Способен применять	Основные разделы	Применять на	Математическим
естественнонаучные	математики и	практике	аппаратом,
и общеинженерные	информатики	фундаментальные	основными
знания, методы		знания	методами
математического		математических	постановки и
анализа и		основ информатики	решения
моделирования,		при постановке и	прикладных задач,
теоретического и		решении	необходимых для
экспериментального		прикладных задач	профессиональной
исследования в			деятельности
профессиональной			
деятельности			

Где в наименовании индикатора (например, ИУК-1.1.1):

 ${\it \it M}$ — показатель индикатора;

YK — код типа компетенции;

первое число – код компетенции;

второе число — код вида индикатора (1 -индикатор «Знать», 2 -индикатор «Уметь», 3 -индикатор «Владеть»);

третье число – нумерация индикатора внутри вида]

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Объём дисциплины (модуля) составляет 2 зачётные единицы, в том числе 72 часа, выделенных на контактную работу обучающихся с преподавателем (из них 36 часов — практические, семинарские занятия и 36 часов — на самостоятельную работу обучающихся).

Таблица 2 – Структура и содержание дисциплины (модуля)

Раздел, тема дисциплины		Ко	онтактн работа в часах	ая	Сам	ост.	Форма текущего контроля успеваемости,
(модуля)	Семестр	Л	ПЗ	ЛР	КР	СР	форма промежуточной аттестации [по семестрам]
Тема 1. Матрицы и операции над ними. Алгебраическое дополнение.	1		4			4	Устный опрос
Тема 2. Определители матриц и их свойства. Минор. Методы нахождения определителей матрицы.			4			4	Устный опрос
Тема 3. Решение систем линейных алгебраических уравнений.			4			4	Контрольная работа
Тема 4. Векторы. Основные понятия. Линейные операции над векторами.			4			4	Устный опрос
Тема 5. Производная функции.			4			4	Устный опрос
Тема 6. Предел функции. Первый и второй замечательные пределы.			4			4	Контрольная работа
Тема 7. Понятия и представление комплексных чисел.			4			4	Устный опрос
Тема 8. Операции над комплексными числами. Формула Муавра.			4			4	Контрольная работа
Тема 9. Определенный и неопределенный интеграл. Основные методы интегрирования.			4			4	Контрольная работа
Итого			36			36	Экзамен

Примечание: Л – лекция; ПЗ – практическое занятие, семинар; ЛР – лабораторная работа; КР – курсовая работа; СР – самостоятельная работа.

Таблица 3 – Матрица соотнесения разделов, тем учебной дисциплины (модуля) и формируемых компетенций

Раздел, тема	Кол-во	Код компетенции	Общее
дисциплины (модуля)	часов	ОПК-1	количество
, , ,	писов	OTHE 1	компетенций
Тема 1. Матрицы и операции	4		
над ними. Алгебраическое	4	+	1
дополнение.			
Тема 2. Определители			
матриц и их свойства.	4	+	1
Минор. Методы нахождения			
определителей матрицы.			
Тема 3. Решение систем			
линейных алгебраических	4	+	1
уравнений.			
Тема 4. Векторы. Основные	4		
понятия. Линейные операции	4	+	1
над векторами.			
Тема 5. Производная	4	+	1
функции.	•	·	_
Тема 6. Предел функции.			
Первый и второй	4	+	1
замечательные пределы.			
Тема 7. Понятия и			
представление комплексных	4	+	1
чисел.			
Тема 8. Операции над	4		
комплексными числами.	4	+	1
Формула Муавра.			
Тема 9. Определенный и			
неопределенный интеграл.	4	+	1
Основные методы			
интегрирования.	2.5		
Итого	36		1

Краткое содержание каждой темы дисциплины (модуля)

Тема 1. Матрицы и операции над ними. Алгебраическое дополнение.

Основные сведения о матрицах. Виды матриц. Операции над матрицами и их свойства. Произведение матриц на число. Сложение и вычитание матриц. Произведение матриц. Возведение матрицы в степень с натуральным показателем. Транспонирование матриц. Алгебраическое дополнение.

Тема 2. Определители матриц и их свойства. Минор. Методы нахождения определителей матрицы.

Определители квадратных матриц и способы их вычисления. Правило треугольников. Правило Саррюса. Минор матрицы. Ранг матрицы. Вычисление ранга матрицы «методом окаймляющих миноров».

Тема 3. Решение систем линейных алгебраических уравнений.

Системы линейных алгебраических уравнений (СЛАУ) основные понятия и определения. Методы решений СЛАУ: метод обратной матрицы (матричный метод), правило Крамера, метод Гаусса.

Тема 4. Векторы. Основные понятия. Линейные операции над векторами.

Основные понятия векторной алгебры. Скалярные и векторные величины. Базис. Умножение вектора на число. Сумма и разность векторов. Проекция вектора на ось. Свойства проекции. Условия ортогональности векторов. Скалярное и векторное произведение векторов. Смешанное произведение векторов.

Тема 5. Производная функции.

Понятие производной. Геометрический смысл производной. Уравнение касательной и нормали к графику функции. Механический смысл производной. Дифференцируемость функции в точке. Производная обратной функции. Производная сложной функции.

Тема 6. Предел функции. Первый и второй замечательные пределы.

Бесконечно малые функции. Определения и основные теоремы. Левосторонняя и правосторонняя производная функции. Связь между функцией, ее пределом и бесконечно малой функцией. Основные теоремы о пределах. Первый замечательный предел. Второй замечательный предел.

Тема 7. Понятия и представление комплексных чисел.

Основные понятия. Геометрическое изображение комплексных чисел. Форма записи комплексного числа. Тригонометрический вид комплексного числа. Сопряженные комплексные числа.

Тема 8. Операции над комплексными числами. Формула Муавра.

Сложение, вычитание, умножение и деление комплексных чисел. Возведение комплексного числа в степень. Формула Муавра. Извлечение корня из комплексного числа. Показательная форма комплексного числа. Уравнение Эйлера. Разложение многочлен на множители.

Тема 9. Определенный и неопределенный интеграл. Основные методы интегрирования.

Понятия и свойства неопределенного интеграла. Основные методы интегрирования: метод непосредственного интегрирования, метод замены переменной (метод подстановки), метод интегрирования по частям. Интегрирование рациональных дробей. Геометрический и физический смысл определенного интеграла. Формула Ньютона-Лейбница.

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕПОДАВАНИЮ И ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Указания для преподавателей по организации и проведению учебных занятий по дисциплине (модулю)

Практические занятия направлены на выработку у обучающихся практических умений для решения профессиональных задач. Наряду с формированием умений и навыков в процессе практического занятия обобщаются, систематизируются, углубляются и конкретизируются теоретические знания, вырабатывается способность и готовность использовать теоретические знания на практике.

Содержание практического занятия определяется перечнем профессиональных умений по конкретной учебной дисциплине (модулю), а также характеристикой

профессиональной деятельности выпускников, требованиями к результатам освоения основной профессиональной образовательной программы.

Для повышения эффективности проведения практических заданий рекомендуется:

- применять сборники задач, заданий и упражнений, сопровождающиеся методическими указаниями к выполнению;
- разработать задания для контроля готовности студентов к практическим занятиям;
- применять коллективные и групповые формы работы, максимально использовать индивидуальные формы с целью повышения ответственности каждого студента за самостоятельное выполнение полного объема работ;
- проведение практических заданий на повышенном уровне с включением в них заданий, связанных с выбором студентов условия выполнения работы;
- подбор дополнительных задач и заданий для студентов, работающих в более быстром темпе, для эффективного использования времени, отводимого на практические занятия.

5.2. Указания для обучающихся по освоению дисциплины (модулю)

Внеаудиторная самостоятельная работа — планируемая учебная работа обучающихся, выполняемая во внеаудиторное время по заданию преподавателя, но без его непосредственного участия.

Самостоятельная работа представляет собой логическое продолжение обязательных аудиторных занятий, которые сопровождаются инструкцией и устанавливаются сроки выполнения задания. Режим работы студент выбирает самостоятельно в зависимости от своих способностей и конкретных условий, что способствует формированию организационной самостоятельности.

Выполнение обучающимися самостоятельной работы направлено на решение следующих задач:

- получение новых знаний, обобщение, систематизация, углубление, закрепление полученных на аудиторных занятиях знаний;
- формирование умений, получение первоначального практического опыта по выполнению профессиональных задач в соответствии с требованиями к результатам освоения дисциплины;
- совершенствование умений применять полученные знания на практике, реализация единства интеллектуальной и практической деятельности.

Формой контроля самостоятельной работы студентов по дисциплине «Математические основы информационных технологий и вычислительной техники» является написание конспекта по указанным темам (таблица 4).

Таблица 4 – Содержание самостоятельной работы обучающихся

таолица - Содержание самостоятельной рабо	JIBI OOY TAR	инаси
Вопросы, выносимые	Кол-во	Форма работы
на самостоятельное изучение	часов	Форма расоты
Невырожденные матрицы.	4	Тематический конспект
Свойства определителей.	4	Тематический конспект
Решение систем линейных уравнений. Теорема	4	Тематический конспект
Кронекера-Капелли.		
Разложение вектора по ортам координатных	4	Тематический конспект
осей		
Основные правила дифференцирования	4	Тематический конспект
Бесконечно большая функция	4	Тематический конспект
Изоморфизм множества комплексных чисел	4	Тематический конспект

Вопросы, выносимые	Кол-во	Форма работы
на самостоятельное изучение	часов	Форма расоты
Невырожденные матрицы.	4	Тематический конспект
Разложение в ряд Фурье четных и нечетных	4	Тематический конспект
функций		
«Берущиеся» и «неберущиеся» интегралы	4	Тематический конспект

5.3. Виды и формы письменных работ, предусмотренных при освоении дисциплины (модуля), выполняемые обучающимися самостоятельно

Формой работы по темам для самостоятельного обучения является письменный конспект.

Конспект — это письменный текст, в котором кратко и последовательно изложено содержание основного источника информации. Записи могут быть сделаны как в виде точечных выдержек, цитат, так и в форме свободной подачи мысли.

Каждая лекция в конспекте должна начинаться с темы, необходимо также использовать «принцип наглядности»: подчеркивание, выделение цветом, прописные буквы, таблицы, схемы и зарисовки. Основные мысли автора формулируйте небольшими предложениями (тезисами), коротко и понятно. Если конспект составлен правильно, он должен отражать логику и смысловую связь записываемой информации. Конспект поможет воспринять информацию практически любой сложности через длительное время.

Тематический конспект заключается в освещений какого-либо вопроса; при это используется не один источник, а несколько. Такой конспект позволяет лучше анализировать заданную тему, раскрывать поставленные вопросы и изучать их с разных сторон.

В конспекте обязательно выделяют отдельные части. Определения, формулы и законы в конспекте можно сделать более заметными, заключив их в рамки. Записи нужно создавать с использованием принятых условных обозначений.

6. ОБРАЗОВАТЕЛЬНЫЕ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

При реализации различных видов учебной работы по дисциплине «Математические основы информационных технологий и вычислительно техники» могут использоваться электронное обучение и дистанционные образовательные технологии.

6.1. Образовательные технологии

Учебные занятия по дисциплине (модулю) могут проводиться с применением информационно-телекоммуникационных сетей при опосредованном (на расстоянии) интерактивном взаимодействии обучающихся и преподавателя в режимах online и (или) offline в формах видеолекций, лекций-презентаций, видеоконференции, собеседования в режиме форума, чата, выполнения виртуальных практических и (или) лабораторных работ и др.]

Таблица 5 – Образовательные технологии, используемые при реализации учебных занятий

34HM1HH			
Раздел, тема	Форма учебного занятия		
дисциплины (модуля)	Лекция	Практическое	Лабораторная
		занятие, семинар	работа
Тема 1. Матрицы и операции	Не	Фронтальный	Не
над ними. Алгебраическое	предусмотрено	опрос,	предусмотрено
дополнение.		выполнение	

Раздел, тема	Ф	орма учебного заняті	RN
дисциплины (модуля)	Лекция	Практическое	Лабораторная
, ,		занятие, семинар	работа
		практических	1
		заданий (решение	
		заданий и задач)	
Тема 2. Определители матриц и	Не	Фронтальный	Не
их свойства. Минор. Методы	предусмотрено	опрос,	предусмотрено
нахождения определителей	1 . 5	выполнение	1 . 0
матрицы.		практических	
		заданий (решение	
		заданий и задач)	
Тема 3. Решение систем	Не	Фронтальный	Не
линейных алгебраических	предусмотрено	опрос,	предусмотрено
уравнений.	1 . 5	выполнение	1 . 0
		практических	
		заданий (решение	
		заданий и задач)	
Тема 4. Векторы. Основные	Не	Фронтальный	Не
понятия. Линейные операции	предусмотрено	опрос,	предусмотрено
над векторами.	1 . 5	выполнение	1 . 0
_		практических	
		заданий (решение	
		заданий и задач)	
Тема 5. Производная функции.	Не	Фронтальный	Не
	предусмотрено	опрос,	предусмотрено
	1 . 5	выполнение	1 . 0
		практических	
		заданий (решение	
		заданий и задач)	
Тема 6. Предел функции.	Не	Фронтальный	Не
Первый и второй	предусмотрено	опрос,	предусмотрено
замечательные пределы.		выполнение	
_		практических	
		заданий (решение	
		заданий и задач)	
Тема 7. Понятия и	Не	Фронтальный	Не
представление комплексных	предусмотрено	опрос,	предусмотрено
чисел.		выполнение	
		практических	
		заданий (решение	
		заданий и задач)	
Тема 8. Операции над	Не	Фронтальный	Не
комплексными числами.	предусмотрено	опрос,	предусмотрено
Формула Муавра.		выполнение	
		практических	
		заданий (решение	
		заданий и задач)	
Тема 9. Определенный и	Не	Фронтальный	Не
неопределенный интеграл.	предусмотрено	опрос,	предусмотрено
Основные методы		выполнение	
интегрирования.		практических	

Раздел, тема	Ф	орма учебного заняті	RN
дисциплины (модуля)	Лекция	Практическое	Лабораторная
		занятие, семинар	работа
		заданий (решение	
		заданий и задач)	

6.2. Информационные технологии

При реализации различных видов учебной и внеучебной работы используются следующие информационные технологии: виртуальная обучающая среда (LMS Moodle «Электронное образование») или иных информационных систем, сервисов и мессенджеров.

Наименование	Темы, разделы	Краткое описание применяемой
образовательной технологии	дисциплины	технологии
Использование возможностей	1-9	Проведение входного, текущего
Интернета в учебном		и рейтингового контроля знаний
процессе		учащихся (в системах
-		дистанционного обучения)
		,
Использование возможностей	1-9	Подготовка к защите отчетов
электронной почты		по лабораторным работам
преподавателя		
Использование средств	1-9	Использование мультимедийной
представления учебной		презентации
информации		

6.3. Программное обеспечение, современные профессиональные базы данных и информационные справочные системы

6.3.1. Программное обеспечение

Наименование программного обеспечения	Назначение
Adobe Reader	Программа для просмотра электронных
	документов
Платформа дистанционного обучения LMS	Виртуальная обучающая среда
Moodle	Виртуальная обучающая среда
Mozilla FireFox	Браузер
Microsoft Office 2013,	Пакет офисных программ
Microsoft Office Project 2013, Microsoft Office	
Visio 2013	
7-zip	Архиватор
Microsoft Windows 7 Professional	Операционная система
Kaspersky Endpoint Security	Средство антивирусной защиты
Google Chrome	Браузер
Notepad++	Текстовый редактор
OpenOffice	Пакет офисных программ
Opera	Браузер
Paint .NET	Растровый графический редактор

6.3.2. Современные профессиональные базы данных и информационные справочные системы

- Электронный каталог Научной библиотеки АГУ на базе MARK SQL НПО «Информ-систем» https://library.asu.edu.ru/catalog/;
- Электронные версии периодических изданий, размещённые на сайте информационных ресурсов <u>www.polpred.com</u>;
- Электронный каталог «Научные журналы АГУ» https://journal.asu.edu.ru/.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Паспорт фонда оценочных средств

При проведении текущего контроля и промежуточной аттестации по дисциплине (модулю) «Математические основы информационных технологий и вычислительной техники» проверяется сформированность у обучающихся компетенций, указанных в разделе 3 настоящей программы. Этапность формирования данных компетенций в процессе освоения образовательной программы определяется последовательным освоением дисциплин (модулей) и прохождением практик, а в процессе освоения дисциплины (модуля) — последовательным достижением результатов освоения содержательно связанных между собой разделов, тем.

Таблица 6 – Соответствие разделов, тем дисциплины (модуля), результатов обучения по дисциплине (модулю) и оценочных средств

Контролируемый раздел, тема дисциплины	Код контролируемой	Наименование
(модуля)	компетенции	оценочного средства
Тема 1. Матрицы и операции над ними.	ОПК-1	Контрольная работа
Алгебраическое дополнение.		
Тема 2. Определители матриц и их	ОПК-1	Контрольная работа
свойства. Минор. Методы нахождения		
определителей матрицы.		
Тема 3. Решение систем линейных	ОПК-1	Контрольная работа
алгебраических уравнений.		
Тема 4. Векторы. Основные понятия.	ОПК-1	Контрольная работа
Линейные операции над векторами.		
Тема 5. Производная функции.	ОПК-1	Контрольная работа
Тема 6. Предел функции. Первый и второй	ОПК-1	Контрольная работа
замечательные пределы.		
Тема 7. Понятия и представление	ОПК-1	Контрольная работа
комплексных чисел.		
Тема 8. Операции над комплексными	ОПК-1	Контрольная работа
числами. Формула Муавра.		
Тема 9. Определенный и неопределенный	ОПК-1	Контрольная работа
интеграл. Основные методы		
интегрирования.		

7.2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Таблица 7 – Показатели оценивания результатов обучения в виде знаний

Шкала оценивания	Критерии оценивания		
5 «отлично»	правильно понимает сущность вопроса, дает точное определение и истолкование основных понятий; строит ответ по собственному плану, сопровождает ответ новыми примерами, умеет применить знания в новой ситуации; может установить связь между изучаемым и ранее изученным материалом из курса, а также с материалом, усвоенным при изучении других дисциплин		
4 «хорошо»	ответ дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении других дисциплин; допустил ошибку или не более двух недочетов и может их исправить самостоятельно или с помощью преподавателя		
3	правильно понимает сущность вопроса, но в ответе имеются отдельные		
«удовлетвори	пробелы в усвоении вопроса курса, не препятствующие дальнейшему		
тельно»	усвоению материала; допустил не более одной грубой ошибки		
2 «неудовлетво рительно»	не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочетов, чем необходимо для оценки 3 (удовлетворительно); не может ответить ни на один из поставленных вопросов		

Таблица 8 – Показатели оценивания результатов обучения в виде умений и владений

THOUTHING THE	полица о – показатели оценивания результатов обучения в виде умении и владении			
Шкала оценивания	Критерии оценивания			
оценивания				
5	выполнил работу в полном объеме с соблюдением необходимой			
_	последовательности действий; в ответе правильно и аккуратно выполнены			
«ОТЛИЧНО»	все записи, таблицы, рисунки, графики, вычисления.			
	выполнил работу в полном объеме с соблюдением необходимой			
4	последовательности действий; в ответе правильно и аккуратно выполнены все записи, таблицы, рисунки, графики, вычисления. Допущено 2-3			
//v.opouto//				
«хорошо»				
	недочета.			
3	выполнил работу не полностью, но объем работы таков, что позволяет			
«удовлетвори	получить правильные результаты и выводы; в ходе работы были допущены			
тельно»	ошибки.			
2	выполнил работу не полностью или объем выполненной части работы не			
«неудовлетво	позволяет сделать правильных выводов.			
рительно»				

7.3. Контрольные задания и иные материалы, необходимые для оценки результатов обучения по дисциплине (модулю)

Тема 1. Матрицы и операции над ними. Алгебраическое дополнение.

Вариант № 0

^{1.} Выполните действия с матрицами:

a) -A-2B

б) 3В+(2А-В)

$$e) \frac{1}{3}A$$

$$A = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 2 & 4 \\ 3 & -1 & 2 \end{pmatrix} \quad \mathbf{H} \quad B = \begin{pmatrix} 2 & -3 & 6 \\ 3 & 1 & 9 \\ 1 & 4 & 3 \end{pmatrix}$$

2. Даны матрицы:

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 0 & 1 \end{pmatrix} \quad \text{M} \quad B = \begin{pmatrix} -3 & 0 \\ 0 & 1 \\ 2 & 0 \end{pmatrix}$$

Hайти: $4A+2B^T$

3. Привести матрицу к единичному виду при помощи действий со строками:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & 5 & 7 \end{pmatrix}$$

Тема 2. Определители матриц и их свойства. Минор. Методы нахождения определителей матрицы.

Вариант №0

1. Найти произведение матриц: $A \cdot B$ и $B \cdot A$

$$A = \begin{pmatrix} -7 & 4 \\ -3 & 6 \\ 1 & 3 \end{pmatrix} B = \begin{pmatrix} 1 & 1 & 4 \\ 10 & -7 & 0 \end{pmatrix}$$

2. Найти определитель 3-го порядка матрицы с помощью метода треугольников и правила Саррюса:

$$C = \begin{pmatrix} 7 & -3 & 5 \\ 5 & 2 & 1 \\ 2 & -1 & 3 \end{pmatrix}$$

3. Возвести квадратную матрицу в степень
$$M^3$$
: $M = \begin{pmatrix} 1 & 2 & -2 \\ 0 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$

Тема 3. Решение систем линейных алгебраических уравнений.

Вариант №0

1. Решить систему алгебраических уравнений матричным методом:

$$\begin{cases} 2x_1 - 4x_2 + x_3 = 3\\ x_1 - 5x_2 + 3x_3 = -1\\ x_1 - x_2 - x_3 = 1 \end{cases}$$

2. По матрице коэффициентов и свободным членам составить систему уравнений и решить ее методом подстановки:

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 4 & 1 \\ 2 & 2 & 0 \end{pmatrix}; B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Тема 4. Векторы. Основные понятия. Линейные операции над векторами.

Вариант №0

- 1. Вычислить модуль вектора $A\vec{B}$, если $\vec{A}(3;-1-1)$ и $\vec{B}(-7;11;4)$.
- 2. Даны векторы $\vec{a}(1;-4;2)$ и $\vec{b}(-1;0;5)$. Найти:
 - $-\vec{a}\cdot\vec{b}$
 - $-\vec{b}^2$
 - $-2\vec{a}-4\vec{b}$
 - $-\vec{a}+\vec{b}$
- 3. Найти косинус угла между векторами $\vec{a}(-3;-6;2)$ и $\vec{b}(-1;0;5)$.
- 4. Будут ли векторы: \vec{c} и \vec{d} коллинеарны?
- 5. Если $\vec{c}=\vec{a}-2\vec{b}$ и $\vec{d}=2\vec{a}-\vec{b}$. Параметры векторов см. задание 3.
- 6. Вычислить направляющие косинусы вектора $\vec{p}(5;-12;0)$.

Тема 5. Производная функции.

Вариант №0

1. Представить вектор $\vec{d} = (6;7;3)$ как линейную комбинацию векторов:

$$\vec{a} = (1;3;2)$$

$$\vec{b} = (1;2;-5)$$

$$\vec{c} = (2;1;3).$$

2. Найти матрицу перехода от базиса $S = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ к базису $S' = (\vec{f}_1, \vec{f}_2, \vec{f}_3)$, если:

$$\vec{f}_1 = -2\vec{e}_1 + \vec{e}_2 + 2\vec{e}_3$$

$$\vec{f}_2 = 2\vec{e}_1 - 2\vec{e}_2 + \vec{e}_3$$

$$\vec{f}_3 = \vec{e}_1 - \vec{e}_2 + 3\vec{e}_3$$
.

Найти координаты вектора $\vec{x} = 4\vec{f}_1 + 2\vec{f}_2 - \vec{f}_3$ в базисе S' .

Тема 6. Предел функции. Первый и второй замечательные пределы.

Вычислить значение выражений с помощью первого и второго замечательных пределов:

$$\lim_{x \to 0} \frac{\operatorname{tg}^3 6x \cdot \cos 7x}{\sin 3x \cdot \arcsin^2 x} \qquad \lim_{x \to 0} \frac{1 - \cos 8x}{\operatorname{arctg}^2 5x}$$

Тема 7. Понятия и представление комплексных чисел. Тема 8. Операции над комплексными числами. Формула Муавра.

Вариант №0

1. Найти сумму, разность, произведение и частное комплексных чисел:

$$Z_1 = 3 - 2i$$

$$Z_2 = 1 + 3i$$

2. Вычислить:

$$\frac{1+2i}{-2+i}\cdot (-i)+1$$

3. Найти значения выражения с помощью формулы Муавра:

$$(2+2i)^8$$

 4^* . Найти значение выражения: $\sqrt[8]{1+i}$.

Тема 9. Определенный и неопределенный интеграл. Основные методы интегрирования.

Вариант №0

1. Найти следующие интегралы:

$$\int 2(3x-1)^2 dx$$

$$\int \frac{x^3 + 3x^2 + 4x}{x} dx$$

$$\int \frac{x^2 - x}{3x} dx$$

$$\int 4x^3 dx$$

2. Найти неопределенный интеграл методом непосредственного интегрирования:

$$\int \frac{3}{2\sqrt{x}} dx \qquad \int \frac{7}{\cos^2 x} dx$$

$$\int x^4 dx \qquad \int \frac{xdx}{\sqrt{1-4x^4}} \qquad \int \frac{2x^6 dx}{3-x^7}$$

3. Найти неопределенный интеграл методом интегрирования по частям:

$$\int xe^x dx$$

$$\int (x-7)\sin 5x dx$$

$$\int x^2 \sin x dx$$

Перечень вопросов и заданий, выносимых на экзамен

- 1. Матрицы. Виды матриц. Действия над матрицами.
- 2. Алгебраическое дополнение и миноры.
- 3. Вычисление определителей методом треугольников и разложением по элементам строки или столбца.
- 4. Невырожденная матрица. Обратная матрица. Нахождение обратной матрицы.
- 5. Матричный метод решения систем линейных алгебраических уравнений. Формула Крамера.
- 6. Метод Гаусса решения систем алгебраических линейных уравнений.
- 7. Действия над векторами.
- 8. Линейная зависимость и независимость векторов.
- 9. Векторный базис. Координаты вектора.
- 10. Прямоугольная декартовая система координат. Деление отрезка в заданном соотношении. Определение расстояния между точками.
- 11. Скалярное произведение двух векторов и его свойства.
- 12. Первообразная функция и неопределенный интеграл.
- 13. Простейшие свойства неопределенного интеграла и его геометрический смысл.
- 14. Интегрирование методом разложения и методом замены переменной.
- 15. Метод интегрирования по частям.
- 16. Интегрирование тригонометрических функций.
- 17. Определенный интеграл и его свойства.
- 18. Решение физических задач с помощью определенного интеграла.

Таблица 9 – Примеры оценочных средств с ключами правильных ответов

		-p	-A-12 - 10110 101111 11 PUDITUIDII 01 D-102	
№ п/ п	Тип задания	Формулировка задания	Правильный ответ	Время выполнен ия (в минутах)
Код ОП.		ование проверяемой кол Чему равен квадрат	ипетенции 1	1
1.	закрыто	·	•	1

№ п/ п	Тип задания	Формулировка задания	Правильный ответ	Время выполнен ия (в минутах)
	го типа	1) -1 2) 0 3) 1 4) 4		
2.		Как называются числа вида <i>x</i> + <i>iy</i> ? 1) целыми 2) сопряженными 3) комплексными 4) действительными	3	1
3.		Чему равен модуль комплексного числа $z = 5 - 3i$? 1) $\sqrt{17}$ 2) $\sqrt{6}$ 3) $\sqrt{34}$ 4) $\sqrt{22}$	3	2
4.		Как называются числа $z = x + iy$ и $z = x - iy$? 1) взаимно сопряженными 2) взаимно заряженными 3) взаимно напряженными 4) взаимно пораженными		1
5.		Чему равно выражение <i>i</i> ⁴ ? 1) 0 2) 1 3) 16 4) -1	2	1
6.	Задание открыт ого типа	Правила Крамера для решения системы линейных алгебраических уравнений?	Пусть дана система трех линейных уравнений: $\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$ Для решения системы линейных уравнений методом Крамера из коэффициентов при неизвестных составляется и находится главный определитель системы, Δ . Далее	5-8

<u>№</u> п/ п	Тип задания	Формулировка задания	Правильный ответ	Время выполнен ия (в минутах)
			составляются определители по переменным Δ_x , Δ_y , Δ_z . Для этого в главном определителе вместо столбца коэффициентов при соответствующей переменной записывается столбец свободных членов. Тогда решение системы находится по формулам Крамера: $x_0 = \frac{\Delta_x}{\Delta}$, $y_0 = \frac{\Delta_y}{\Delta}$, $z_0 = \frac{\Delta_z}{\Delta}$.	
7.		Найти скалярное произведение векторов: $a = 4i - 3j + k$ и $b = -i + 2j - 3k$?	Здесь векторы a и b заданы как сумма базисных векторов (в ортонормированном базисе), т.е. они имеют координаты $a = \{4; -3; 1\}$ и $= \{-1; 2; -3\}$. Известны их координаты, поэтому для вычисления скалярного произведения необходимо применить формулу $a \cdot b = a_x b_x + a_y b_y + a_z b_z$. Подставим $a \cdot b = 4 \cdot (-1) + (-3) \cdot (2) + 1 \cdot (-3) = -13$	6
8.		Найти сумму, разность, произведение и частное комплексных чисел: $z_1 = 1 + 3i$ и $z_2 = 4 - 5i$?	Для того чтобы получить сумму комплексных чисел, необходимо сложить их действительные и мнимые части $z = z_1 + z_2 = 5 - 2i$. Для того чтобы получить разность комплексных чисел, необходимо вычисть их действительные и мнимые части $z = z_1 - z_2 = -3 + 8i$. Умножение комплексных чисел осуществляем по правилу раскрытия скобок: $(1+3i)\cdot(4-5i)=1\cdot4-1\cdot5i+3\cdot4i-3\cdot5i^2$ $= 4-5i+12i+15=19+7i$ Частное от двух комплексных чисел находится по правилу: необходимо числитель и знаменатель умножить на комплексное число сопряженное знаменателю: $\frac{1+3i}{4-5i} = \frac{(1+3i)(4+5i)}{(4-5i)(4+5i)} = \frac{1\cdot4+5\cdot i+3\cdot 4i+3}{4\cdot 4+5\cdot 5}$ $= \frac{4+5i+12i-15}{16+25} = \frac{-11+17i}{41} = -\frac{11}{41} + \frac{17}{41}$	$\frac{\cdot 5i}{} =$

№ п/ п	Тип задания	Формулировка задания	Правильный ответ	Время выполнен ия (в минутах)
9.		Алгоритм перевода комплексного числа из алгебраической в тригонометрическую форму?	1. Выделить действительную x и мнимую y части в алгебраической форме комплексного числа. 2. Изобразить комплексное число на комплексной плоскости, определить координатную четверть, в которой оно находится. 3. Найти аргумент комплексного числа: $\arg z = arctg \frac{y}{x}$, если I и IV четверти; $\arg z = arctg \frac{y}{x} - \pi$, если II четверть: 4. Найти модуль комплексного числа: $r = z = \sqrt{x^2 + y^2}$. 5. Записать комплексное число в тригонометрическом виде: $z = r(\cos \varphi + i \sin \varphi)$.	5
10.		Элементарные преобразования матриц?	1. Перестановка любых двух строк (столбцов) в матрице. 2. Умножение любой строки (столбца) на любое число отличное от нуля. 3. Прибавление к любой строке (столбцу) другой строки (столбца), умножение на число. При помощи элементарных преобразований практически любую матрицу можно привести к матрице, у которой в начале главной диагонали стоят несколько подряд единиц, а все остальные элементы равны нулю – каноническая матрица.	3

7.4. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине (модулю)

Таблица 10 – Технологическая карта рейтинговых баллов по дисциплине (модулю)

№ п/п	Контролируемые мероприятия		Количество мероприятий / баллы	Максимальное количество баллов	Срок представле ния
		Осн	овной блок		
1.	Своевременное выполнение контрольных точек в течение			30	в конце семестра

№ п/п	Контролируемые мероприятия	Количество мероприятий / баллы	Максимальное количество баллов	Срок представле ния	
	семестра				
2.	Конспектирование теоретического материала по дисциплине		10	в течение семестра	
Bcer	0		40	-	
	Бло	к бонусов			
3.	Выполнение задания преподавателя на занятии		5	в течение семестра	
4.	Выполнение дополнительного задания повышенной сложности		5	в течение семестра	
Bcer	0		10	-	
	Дополнительный блок				
5.	Экзамен			в конце	
				семестра	
Bcero 5		50	-		
ИТС	ИТОГО 100			-	

Таблица 11 – Система штрафов (для одного занятия)

Показатель	Балл
Опоздание на занятие	-2
Нарушение учебной дисциплины	-5
Неготовность к занятию	-5
Пропуск занятия без уважительной причины	-5
Несвоевременное выполнение контрольных точек по дисциплине	-10

Таблица 12 — Шкала перевода рейтинговых баллов в итоговую оценку за семестр по дисциплине (модулю)

Сумма баллов	Оценка по 4-балльной шкале	
90–100	5 (отлично)	
85–89		
75–84	4 (хорошо)	
70–74		
65–69	2 (уугар уатраруулану уга)	
60–64	3 (удовлетворительно)	
Ниже 60	2 (неудовлетворительно)	

При реализации дисциплины (модуля) в зависимости от уровня подготовленности обучающихся могут быть использованы иные формы, методы контроля и оценочные средства, исходя из конкретной ситуации.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

8.1. Основная литература

1. Крупин, В. Г. Высшая математика. Теория вероятностей, математическая статистика, случайные процессы. Сборник задач с решениями : учебное пособие / Крупин В. Г. - Москва : Издательский дом МЭИ, 2019. - ISBN 978-5-383-01225-3. - Текст : электронный

- // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785383012253.html;
- 2. Орлов, М. И. Высшая математика. Разделы : линейная алгебра, функции многих переменных, дифференциальные уравнения, поверхности в трехмерном пространстве. Учебное пособие для студентов специальностей 2001. 00, 2002. 00 и направлений 5531. 00, 5516. 00, 5507. 00 / Орлов М. И., Софиева В. Ф. Москва : МИСиС, 2000. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/Misis 385.html.

8.2. Дополнительная литература

- 1. Веретенников, Н. Н. Высшая математика. Неопределенный интеграл : задачник-практикум по математике. В 2-х ч. Часть 2 : учебно-методическое пособие для выполнения индивидуальных домашних заданий / В. Н. Веретенников, Е. А. Бровкина. Москва ; Берлин : Директ-Медиа, 2020. 145 с. ISBN 978-5-4499-1662-4. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785449916624.html;
- 2. Шерстов, С. В. Аналитическая геометрия и линейная алгебра : матрицы и системы уравнений / Шерстов С. В. Москва : МИСиС, 2015. 17 с. ISBN 978-5-87623-970-9. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785876239709.html.

8.3. Интернет-ресурсы, необходимые для освоения дисциплины (модуля)

- 1. Электронный каталог Научной библиотеки АГУ на базе MARK SQL НПО «Информсистем» https://library.asu.edu.ru/catalog/;
- 2. Электронная библиотечная система. Консультант студента. «ЭБС Консультант студента» https://www.studentlibrary.ru/.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для проведения практических занятий по дисциплине «Математические основы информационных технологий и вычислительной техники» необходима учебная и компьютерная аудитория, с доступом к действующим в АГУ им. В.Н. Татищева электронным библиотечным системам.

Рабочая программа дисциплины (модуля) при необходимости может быть адаптирована для обучения (в том числе с применением дистанционных образовательных технологий) лиц с ограниченными возможностями здоровья, инвалидов. Для этого требуется заявление обучающихся, являющихся лицами с ограниченными возможностями здоровья, инвалидами, или их законных представителей и рекомендации психолого-медико-педагогической комиссии. Для инвалидов содержание рабочей программы дисциплины (модуля) может определяться также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).