МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева» (Астраханский государственный университет им. В. Н. Татищева)

СОГЛАСОВАНО Руководитель ОПОП	УТВЕРЖДАЮ Заведующий кафедрой ИТ
Ю.А. Головко	А.Н. Марьенков
«13» июня 2024 г.	«13» июня 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Организация ЭВМ и систем»

Составитель(и)	Синельщиков А.В., доцент кафедры ИТ
Направление подготовки / специальность	09.03.02 Информационные системы и технологии
Направленность (профиль) ОПОП	Технологии разработки и администрирования информационных систем
Квалификация (степень)	бакалавр
Форма обучения	очно-заочная
Год приёма	2022
Курс	3
Семестр(ы)	5

1 ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- **1.1 Цели освоения дисциплины**: получение знаний о составных частях ЭВМ, их назначении и устройстве, взаимодействии в процессе работы ЭВМ, о методах управления ими, о структуре и функциях программного обеспечения, о взаимодействии аппаратного и программного обеспечения ЭВМ.
 - **1.2** Задачи освоения дисциплины (модуля) «Организация ЭВМ и систем»:
 - изучение состава ЭВМ;
 - знакомство с процессорными модулями ЭВМ, их архитектурой и структурой;
 - изучение функциональных особенностей ЭВМ и их программирования;
 - знакомство с классами параллельных систем, их характеристиками и особенностями;
 - изучение архитектурных стандартов системных шин;
 - знакомство с современными технологиями СБИС микропроцессорных систем (ПМ, микросхем памяти, контроллеров периферийных устройств);
 - изучение состояний и тенденций развития средств вычислительной техники.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

- **2.1. Учебная дисциплина (модуль)** «Организация ЭВМ и систем» относится к части, формируемой участниками образовательных отношений и осваивается в 5 семестре.
- 2.2. Для изучения данной учебной дисциплины (модуля) необходимы следующие знания, умения, навыки, формируемые предшествующими учебными дисциплинами (модулями):
 - знания базовых понятий информатики, математики, математических основ информационных технологий и вычислительной техники.

знания:

- роль и значение информационных ресурсов в современном обществе, виды и формы информации,
- современные информационные технологии обработки информации, этапы и методы ее обработки информации,
- применять методы анализа корректности логических схем,
 - умения:
- применять компьютерную технику и информационные технологии для обработки
- информации, и решения практических задач, строить алгоритмы обработки данных;
- программная реализация алгоритмов на персональном компьютере;
- применять, анализировать, преобразовывать информационные модели реальных объектов и процессов;

навыки:

- владения инструментальных средств информационных технологий обработки информации,
- владения инфокоммуникационных технологий.
- 2.3. Последующие учебные дисциплины (модули) и (или) практики, для которых необходимы знания, умения, навыки, формируемые данной учебной дисциплиной

(модулем):

- Сетевые операционные системы и администрирование в сетях,
- Информационные сети,
- Методы и алгоритмы защиты информации,
- Цифровая обработка информации.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОПОП ВО по данному направлению подготовки (специальности):

б) общепрофессиональных (ОПК):

ОПК-2 Способен использовать современные информационные технологии и программные средства, в том числе отечественного производства, при решении задач профессиональной деятельности.

ОПК-5 Способен инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем.

Таблица 1 – Декомпозиция результатов обучения

Г од момнотомум и	Код компетенции и Планируемые результаты освоения дисциплины							
наименование	Знать (1)	Уметь (2)	Владеть (3)					
компетенции								
ОПК-2. Способен	ИОПК-2.1.1	ИОПК-2.2.1	ИОПК-2.3.1					
использовать	современные	выбирать	применения					
современные	информационные	современные	современных					
информационные	технологии и	информационные	информационных					
технологии и	программные	технологии и	технологий и					
программные	средства, в том числе	программные средства,	программных средств,					
средства, в том	отечественного	в том числе	в том числе					
числе	производства, при	отечественного	отечественного					
отечественного	решении задач	производства, при	производства, при					
производства, при	профессионально й	решении задач	решении задач					
решении задач	деятельности.	профессиональной	профессиональной					
профессиональной		деятельности.	деятельности.					
деятельности								
ОПК-5. Способен	ИОПК-5.1.1 основы	ИОПК-5.2.1	ИОПК-5.3.1					
инсталлировать	системного	выполнять	инсталляции					
программное и	администрирования,	параметрическую	программного и					
аппаратное	администрирования	настройку	аппаратного					
обеспечение для	СУБД, современные	информационных и	обеспечения					
информационных и	стандарты	автоматизированных	информационных и					
автоматизированных	информационного	систем.	автоматизированных					
систем	взаимодействия		систем.					
	систем.							

3 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Объем дисциплины составляет 4 зачетные единицы, в том числе 36 часа на контактную работу обучающихся с преподавателем (из них 36 часа — лабораторные работы) и 108 часа — на самостоятельную работу обучающихся.

Таблица 2 – Структура и содержание дисциплины

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Наименование раздела,	ст	Контактная		Самост.		Форма текущего контроля	
темы	Семест	работа (в часах)		работа		успеваемости, форма	
	ŭ	Л	П3	ЛР	КР	CP	промежуточной аттестации
Тема 1. Организация	5			9		26	отчет о выполнении
вычислений в ЭВМ							лабораторной работы
Тема 2. Функциональная	5			9		28	отчет о выполнении
и структурная							лабораторной работы
организация процессора							
Тема 3. Организация	5			9		26	отчет о выполнении
памяти ЭВМ							лабораторной работы
Тема 4. Архитектурные	5			9		28	отчет о выполнении
особенности							лабораторной работы
организации ЭВМ							
ИТОГО				36		108	Экзамен

Примечание: Л – лекция; ПЗ – практическое занятие, семинар; ЛР – лабораторная работа; КР – курсовая работа; СР – самостоятельная работа.

Таблица 3 – Матрица соотнесения разделов, тем учебной дисциплины (модуля)

и формируемых компетенций

и формируемых компетенции				
Раздел, тема дисциплины (модуля)	Кол-во часов	Код компетенции ОПК-2 ОПК-5		Общее количество компетенций
Тема 1. Организация вычислений в	35	+	+	2
ЭВМ				
Тема 2. Функциональная и	37	+	+	2
структурная организация процессора				
Тема 3. Организация памяти ЭВМ	35	+	+	2
Тема 4. Архитектурные особенности	37	+	+	2
организации ЭВМ				
Итого	144			2

Краткое содержание каждой темы дисциплины (модуля)

Тема 1. Организация вычислений в ЭВМ

Принципы фон Неймана: Основные компоненты компьютера (процессор, память, устройства ввода-вывода), хранимая программа, последовательное выполнение инструкций. Различия с другими архитектурами (Гарвардская).

Системы счисления: Двоичная, восьмеричная, шестнадцатеричная системы счисления. Перевод между системами счисления. Прямой, обратный и дополнительный коды.

Тема 2. Функциональная и структурная организация процессора

Структура процессора: Арифметико-логическое устройство (АЛУ), регистры общего назначения, регистр флагов, счетчик команд, стек.

Способы организации ввода-вывода: Программный ввод-вывод, ввод-вывод с использованием прерываний, прямой доступ к памяти (DMA).

Тема 3. Организация памяти ЭВМ

Организация памяти: Иерархия памяти (регистры, кэш, оперативная память, внешняя память), виртуальная память, адресация памяти.

Классификация параллельных систем: SIMD, MIMD.

Многоядерные процессоры: Особенности организации и работы.

Проблемы синхронизации и обмена данными в многопроцессорных системах.

Факторы, влияющие на производительность: Тактовая частота, архитектура процессора, объем и скорость памяти.

Тема 4. Архитектурные особенности организации ЭВМ

Машинные команды: Формат команд, типы команд (арифметические, логические, команды перехода, команды ввода-вывода).

Цикл выполнения команды: Выборка, декодирование, выполнение, запись результата. Конвейеризация: Принципы конвейерной обработки команд, ускорение выполнения программ.

4 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕПОДАВАНИЮ И ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Указания для преподавателей по организации и проведению учебных занятий по дисциплине (модулю)

Учебная деятельность студента в процессе изучения строится из контактных форм работы с преподавателем (аудиторные занятия, экзамен) и самостоятельной работы. Для успешного освоения дисциплины является обязательным посещение всех занятий, выполнение домашнего задания и иных форм самостоятельной работы, которые назначаются преподавателем.

Методическая поддержка дисциплины обеспечивается использованием дистанционных технологий. Студентам предлагается информационный ресурс, расположенный по адресу: http://moodle.asu-edu.ru, на сервере дистанционного обучения АГУ. Доступ студентов к учебным ресурсам осуществляется по учетной записи и паролю после регистрации на курс «Организация ЭВМ и систем» на период обучения по данной дисциплине. На сервере размещен методический материал по данной дисциплине, в содержание которого входит:

- теоретический материал;
- мультимедийные презентации по тематикам лекций;
- задания и указания по выполнению лабораторно-практических работ;
- тестовые вопросы, предназначенные всех видов контроля, включая самоконтроль освоения учебного материала;
- вопросы к экзамену.

Аудиторные занятия проводятся на основе теоретического материала, опубликованного на образовательном портале, это позволяет студентам изучить пропущенный материал или самостоятельно разобраться с темой, не освоенной на занятии. Для исключения отрыва студентов от учебного процесса проводится учет посещаемости аудиторных занятий. Подобная практика особо важна для начинающих студентов, которые должны привыкнуть к новым формам и ритмам учебной работы.

5.2. Указания для обучающихся по освоению дисциплины (модуля)

В рамках дисциплины «Организация ЭВМ и систем» предполагается организация следующих видов самостоятельной работы студентов (таблица 4):

- работа с теоретическим материалом, учебно-методическим информационным обеспечением;
- подготовка к лабораторно-практическим работам, подготовка отчетов к защите отчетов;
- подготовка к контрольным работам в форме компьютерного тестирования, текущей и промежуточной аттестации (экзамену).

В качестве форм и методов контроля внеаудиторной самостоятельной работы используются: электронные отчеты, устный опрос, публичный доклад, протоколы компьютерного тестирования.

Таблица 4 – Содержание самостоятельной работы обучающихся

		,
Вопросы, выносимые на самостоятельное	Кол-во	Форма работы
изучение	часов	
Тема 1. Организация вычислений в ЭВМ	26	Устный опрос
Представление данных в ЭВМ: Целые числа (со		
знаком и без знака), вещественные числа		
(формат с плавающей точкой, стандарт IEEE		
754), символы (ASCII, Unicode).		
Тема 2. Функциональная и структурная	28	Устный опрос
организация процессора		
Контроллеры устройств: Функции контроллеров,		
взаимодействие с процессором.		
Тема 3. Организация памяти ЭВМ	26	Устный опрос
Методы оценки производительности: MIPS,		
FLOPS, бенчмарки.		
Тема 4. Архитектурные особенности	28	Устный опрос
организации ЭВМ		
Прерывания: Виды прерываний, обработка		
прерываний, приоритеты прерываний.		

Задания к лабораторно-практическим занятиям, творческим проектам и типовым расчетам размещены на образовательном портале http://moodle.asu-edu.ru. Рекомендуется заранее ознакомиться с темой, основными вопросами, рекомендациями, требованиями к представлению отчета и критериями оценивания заданий.

В процессе подготовки к аудиторным занятиям, необходимо обратить особое внимание на самостоятельное изучение рекомендованной литературы. Самостоятельная работа с учебниками, учебными пособиями, научной, справочной литературой, материалами периодических изданий и Интернета является наиболее эффективным методом получения дополнительных знаний, позволяет значительно активизировать процесс овладения информацией, способствует более глубокому усвоению изучаемого материала.

Компьютерное тестирование студентов организовано с использованием образовательной среды Moodle (http://moodle.asu-edu.ru). Для получения доступа к тесту студенту необходимо получить пароль у преподавателя.

Для подготовки к компьютерному тестированию необходимо пройти тренировочный тест. Тестирование имеет своей целью помочь студенту в самооценке уровня подготовленности при изучении теоретического материала.

5.3. Виды и формы письменных работ, предусмотренных при освоении дисциплины, выполняемые обучающимися самостоятельно.

Письменные работы, самостоятельно выполняемые обучающимися при освоении дисциплины, не предусмотрены.

5 ОБРАЗОВАТЕЛЬНЫЕ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

При реализации различных видов учебной работы по дисциплине могут использоваться электронное обучение и дистанционные образовательные технологии.

Основой для выстраивания аудиторных занятий послужила *технология развития критического мышления*, которая, интегрируя элементы проблемного, проектного, дискуссионного обучения, позволяет достигать максимальной эффективности в достижении проектируемых компетенций.

6.1. Образовательные технологии

Цели дисциплины достигаются путем сочетания контактной и самостоятельной работы студентов: проведения лабораторно-практических занятий на ПК и организации самостоятельной работы студентов.

Лабораторно-практические работы выполняются студентами с применением ПК и ориентированы на формирование деятельностных компетентностей. Они заключаются в выполнении сквозного цикла лабораторных работ. В процессе выполнения лабораторных работ достигаются следующие цели:

- изучаются программные средства и технологии обработки информации;
- формируются практические навыки обработки информации различного вида и формы при решении конкретных практических задач;
- формируется навык выявления ошибочных и нештатных ситуаций и реагирования на них.

На лабораторных занятиях студент вначале знакомится с содержанием работы, пользуясь электронными методическими материалами, размещенными на http://moodle.asuedu.ru, затем выполняет задание и показывает результаты преподавателю. Лабораторные работы, выполняются студентом самостоятельно, возникающие при их выполнении проблемы разрешаются в рамках учебного времени и индивидуальных и групповых консультаций. Для выставления баллов по итогам выполнения ЛР, студенты прикрепляют файлы с выполненными работами и отчеты на образовательный портал.

Текущая аттестация студентов проводится в форме контрольных работ, представленных в виде компьютерного теста, в ходе которого студент должен продемонстрировать освоение соответствующей технологии.

Для **самостоятельного изучения** теоретического материала дисциплины рекомендуется использовать Internet-ресурсы, информационные базы, методические разработки, специальную учебную и научную литературу.

В рамках организации самостоятельной работы студентам рекомендуется:

- работа с теоретическим материалом;
- дополнительная подготовка к лабораторно-практическим работам или выполнение части работы, которую они не успели сделать в аудитории, оформление отчетов;
- подготовка к компьютерному тестированию;
- подготовка к текущей и промежуточной аттестации (экзамену).

Для обеспечения самостоятельной работы разработаны:

- учебно-методическое обеспечение теоретический материал;
- методические рекомендации по выполнению лабораторно-практических работ, творческих проектов, типовых расчетов, требования к оформлению и представлению отчетов по выполнению;
- тренировочные тестовые задания;

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

Задача преподавателя состоит в том, чтобы создать условия для выполнения самостоятельной работы (учебно-методическое обеспечение), правильно использовать различные стимулы для реализации этой работы (рейтинговая система), повышать её значимость, и грамотно осуществлять контроль самостоятельной деятельности студента.

Учебные занятия по дисциплине могут проводиться с применением информационнотелекоммуникационных сетей при опосредованном (на расстоянии) интерактивном взаимодействии обучающихся и преподавателя в режимах on-line в формах: видеолекций, лекций-презентаций, видеоконференции, собеседования в режиме чат, форума, чата, выполнения виртуальных практических и/или лабораторных работ и др.

Максимальный объем занятий обучающегося с применением электронных образовательных технологий не должен превышать 25%

Таблица 5 – Образовательные технологии, используемые при реализации учебных занятий

Раздел, тема	Форма учебного занятия				
дисциплины (модуля)	Лекция	Практическое	Лабораторная		
		занятие, семинар	работа		
Тема 1. Организация	Лекция-монолог	Не	Лабораторная		
вычислений в ЭВМ		предусмотрено	работа №№1-2,		
			тестирование,		
			устный опрос		
Тема 2. Функциональная и	Лекция-монолог	Не	Лабораторная		
структурная организация		предусмотрено	работа №№2-4,		
процессора			тестирование,		
			устный опрос		
Тема 3. Организация памяти	Лекция-монолог	Не	Лабораторная		
ЭВМ		предусмотрено	работа №№5-7,		
			тестирование,		
			устный опрос		
Тема 4. Архитектурные	Лекция-монолог	Не	Лабораторная		
особенности организации ЭВМ		предусмотрено	работа №№8-10,		
			тестирование,		
			устный опрос		

6.2. Информационные технологии

При реализации различных видов учебной и вне учебной работы используются следующие информационные технологии:

- использование образовательного сайта http://moodle.asu-edu.ru (размещение учебнометодического материала, публикация заданий для предоставления студентами выполненных отчетов по всем видам работ, ознакомление учащихся с оценками и т.д., размещение объявлений, on-line консультации, организация и проведение компьютерного тестирования, обсуждение вопросов в форуме и т.д.), как элемента интерактивного взаимодействия участников образовательного процесса (технологии дистанционного обучения);
- использование ресурсов ЭБС и сети Internet, как источников информации.
- иные информационные системы, сервисы и мессенджеры.

6.3. Программное обеспечение, современные профессиональные базы данных и информационные справочные системы

6.3.1. Программное обеспечение

Наименование программного	Назначение
обеспечения	
Adobe Reader	Программа для просмотра электронных документов
Moodle	Образовательный портал ФГБОУ ВО «АГУ»
Mozilla FireFox	Браузер
Microsoft Office 2013,	Пакет офисных программ
Microsoft Office Project 2013, Microsoft	
Office Visio 2013	
7-zip	Архиватор
Microsoft Windows 10 Professional	Операционная система
Emu8086	Программный эмулятор работы компьютера с процессором Intel 8086.

6.3.2. Современные профессиональные базы данных, информационных

справочных систем

- 1. Электронный каталог Научной библиотеки АГУ на базе MARK SQL НПО «Информсистем»: https://library.asu-edu.ru.
- 2. Электронная библиотека «Астраханский государственный университет» собственной генерации на электронной платформе ООО «БИБЛИОТЕХ»: https://biblio.asu-edu.ru.
- 3. Электронный каталог «Научные журналы АГУ»: http://journal.asu-edu.ru/.
- 4. Универсальная справочно-информационная полнотекстовая база данных периодических изданий ООО «ИВИС»: http://dlib.eastview.com/
- 5. Электронно-библиотечная система elibrary. http://elibrary.ru

6 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

6.1 Паспорт фонда оценочных средств.

При проведении текущего контроля и промежуточной аттестации по дисциплине (модулю) «Организация ЭВМ и систем» проверяется сформированность у обучающихся компетенций указанных в разделе 3 настоящей программы. Этапность формирования данных компетенций в процессе освоения образовательной программы определяется последовательным освоением дисциплин (модулей) и прохождением практик, а в процессе освоения дисциплины (модуля) — последовательным достижением результатов освоения содержательно связанных между собой разделов, тем.

Таблица 6 – Соответствие разделов, тем дисциплины (модуля), результатов обучения

по дисциплине (модулю) и оценочных средств

Контролируемые разделы	Код контролируемой	Наименование оценочного
дисциплины	компетенции	средства
	(компетенций)	
Тема 1. Организация вычислений в	ОПК-2, ОПК-5	Отчет по лабораторной работе
ЭВМ		1-3, тест, вопросы к экзамену
Тема 2. Функциональная и	ОПК-2, ОПК-5	Отчет по лабораторной работе
структурная организация процессора		4-5, тест, вопросы к экзамену
Тема 3. Организация памяти ЭВМ	ОПК-2, ОПК-5	Отчет по лабораторной работе
		6-8, тест, вопросы к экзамену
Тема 4. Архитектурные особенности	ОПК-2, ОПК-5	Отчет по лабораторной работе
организации ЭВМ		9-10, тест, вопросы к экзамену

Для оценивания результатов обучения в виде <u>знаний</u> используются следующие типы контроля:

 индивидуальное собеседование (устный опрос). письменные работы (отчеты о выполнении ЛПР).

Индивидуальное собеседование проводится по разработанным вопросам к экзамену. Письменная работа (отчет о выполнении ЛПР) проводятся по отдельному учебному элементу программы дисциплины.

Для оценивания результатов обучения в виде **умений и владений** используются практические контрольные задания (далее – ПКЗ), включающих одну или несколько задач (вопросов) в виде краткой формулировки действий (комплекса действий), которые следует выполнить, или описание результата, который нужно получить.

По сложности ПКЗ разделяются на простые и комплексные задания.

Простые ПКЗ предполагают решение в одно или два действия. К ним можно отнести: простые ситуационные задачи с коротким ответом или простым действием; несложные задания по выполнению конкретных действий. Простые задания применяются для оценки

умений. Комплексные задания требуют многоходовых решений как в типичной, так и в нестандартной ситуациях. Это задания в открытой форме, требующие поэтапного решения и развернутого ответа, в т.ч. задания на индивидуальное или коллективное выполнение проектов, на выполнение практических действий или лабораторных работ. Комплексные практические задания применяются для оценки владений.

Типы практических контрольных заданий:

- задания на установление правильной последовательности, взаимосвязанности действий, выяснения влияния различных факторов на результаты выполнения задания;
- установление последовательности (описать алгоритм выполнения действия),
- нахождение ошибок в последовательности (определить правильный вариант последовательности действий);
- указать возможное влияние факторов на последствия реализации умения и т.д.
- задания на принятие решения в нестандартной ситуации (ситуации выбора, много альтернативности решений, проблемной ситуации);
- задания на оценку последствий принятых решений; задания на оценку эффективности выполнения действия.

6.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

В соответствии с балльно-рейтинговой системой (БАРС) оценка за отдельный учебный курс выставляется по шкале от 0 до 100 баллов.

Критерии оценивания, используемые при отчете ЛР.

В системе Moodle балл за выполнение лабораторно-практической работы выставляется в 100-балльной шкале комплексно с учетом степени подготовки студента к выполнению работы, объема выполненной работы на занятии и оформлении отчета в соответствии с перечисленными критериями. В зависимости от выставленного максимального балла (табл. 6) перерасчет за каждый отчет ЛР начисляемых баллов производится автоматически. Итоговый балл за отчеты по лабораторным работам является числом от 0 до 50 баллов.

Таблица 7 – Показатели оценивания результатов обучения в виде знаний

таолица / – п	оказатели оценивания результатов обучения в виде знании
Шкала	Критерии оценивания
оценивания	
5	демонстрирует глубокое знание теоретического материала, умение
«отлично»	обоснованно излагать свои мысли по обсуждаемым вопросам, способность
	полно, правильно и аргументированно отвечать на вопросы, приводить
	примеры
4	демонстрирует знание теоретического материала, его последовательное
«хорошо»	изложение, способность приводить примеры, допускает единичные ошибки,
	исправляемые после замечания преподавателя
3	демонстрирует неполное, фрагментарное знание теоретического материала,
«удовлетвори	требующее наводящих вопросов преподавателя, допускает существенные
тельно»	ошибки в его изложении, затрудняется в приведении примеров и
	формулировке выводов
2	демонстрирует существенные пробелы в знании теоретического материала, не
«неудовлетво	способен его изложить и ответить на наводящие вопросы преподавателя, не
рительно»	может привести примеры

Критерии оценивания, используемые при устном опросе на экзамене

Оценка за экзамен выставляется по шкале от 0 до 50 баллов. Итоговая оценка по предмету вычисляется как сумма баллов, полученных за ответ на экзамене и балл, полученный за отчеты по лабораторным работам. Результат рассчитывается в итоговый балл по шкале от 0

до 100 баллов.

Таблица 8- Показатели оценивания результатов обучения в виде умений и владений

тионици о т	оказатели оценивания результатов обутения в виде умении и владении
Шкала	Критерии оценивания
оценивания	
5	демонстрирует способность применять знание теоретического материала при
«отлично»	выполнении заданий, последовательно и правильно выполняет задания, умеет
	обоснованно излагать свои мысли и делать необходимые выводы
4	демонстрирует способность применять знание теоретического материала при
«хорошо»	выполнении заданий, последовательно и правильно выполняет задания, умеет
	обоснованно излагать свои мысли и делать необходимые выводы, допускает
	единичные ошибки, исправляемые после замечания преподавателя
3	демонстрирует отдельные, несистематизированные навыки, испытывает
«удовлетвори	затруднения и допускает ошибки при выполнении заданий, выполняет задание
тельно»	по подсказке преподавателя, затрудняется в формулировке выводов
2	не способен правильно выполнить задания
«неудовлетво	
рительно»	

Грубыми считаются ошибки, свидетельствующие о том, что студент: не овладел основным материалом дисциплины

- не может применять на практике полученные знания не знает формул, графиков, схем и т.п.
- не знает приемов решения задач, аналогичных ранее решенным.
- Не грубыми ошибками являются неточность чертежа, графика, схемы и т.п.
- неточно сформулированный вопрос или пояснение при решении задачи отдельные ошибки вычислительного характера

Недочетами считаются

- отдельные погрешности в формулировке вопроса или ответа отдельные ошибки вычислительного характера
- небрежное выполнение записей, чертежей, схем, графиков и т.п.

6.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности

<u>Полный комплект оценочных средств размещен на http://moodle.asu-edu.ru.</u> Допуск студентов осуществляется по расписанию проведения аудиторных занятий и сдачи отчетов по выполнению самостоятельной работы.

Образцы оценочных средств для проведения компьютерного тестирования

Полная версия тестовых заданий размещена на http://moodle.asu-edu.ru. Допуск к тестам осуществляется по паролю.

Тема 1. Организация вычислений в ЭВМ

1. Лабораторная работа № 1

1. Перевести следующие числа в десятичную систему счисления (с.с.):

№	Из двоично	й системы	Из восьмеричной системы		Из шестнадцатеричной системы	
0.	0011001	011101100.1101	712134.6466	675327.32	FC302.4CD	148013.1ADC
1.	11010110	000010111.111	2174430.02	13215.7634	50E9.BDE	21B32.428
2.	0111110	00110100110.000	37101.7725	362735.7101	53D09A1.163	78A55E.A
3.	0000000	10101000011.01110	20543.27	15663.13	E17165.9E04	6037439.35F2
4.	0001100	11011110000.0110	270470.53	63757.206	5B76.A9	70736A.70B
5.	011001	11100011.01010	3244655.2	2212.443	4959117.DBE9	A96E66.1F

2. Лабораторная работа № 2

- 1. Запишите числа X и Y в прямом, обратном и дополнительном кодах. Выполните сложение в обратном и дополнительном кодах. Результат переведите в прямой код. Полученный результат проверьте, используя правила двоичной арифметики.
- 2. Измените число *Y*, добавив в конец числа две единицы «11». Сложите полученные числа в модифицированном обратном и модифицированном дополнительном кодах. Результат переведите в прямой код. Выполните проверку сложения, используя правила двоичной арифметики.

№	Числа X и Y	Числа Х и Ү
0.	X=-100101	X=-101101
	Y = 11101	Y = 1101
1.	X=-110101	X=-1101111
	Y = 11101	Y = 10101
2.	X=-1000111	X=-1110001
	Y = 11101	Y = 10011

3. Лабораторная работа № 2

1. Представить следующие числа в формате с плавающей точкой и нормализованной мантиссой:

No	Деся	гичная система	а счисления	Двоичная система счисления
0	0.00564	62.02	10.001	10.001
1	0.01966	52.83	10.0101	10.0101
2	0.01944	175.45	10.101	10.101
3	0.00453	131.64	10.110	10.110
4	0.00757	167.75	100.0001	100.0001

4. Тестовые задания по теме «Организация вычислений в ЭВМ»

1. Основы архитектуры и представление данных:

Вопрос: Какой принцип архитектуры фон Неймана подразумевает хранение данных и инструкций в одной и той же памяти?

Варианты: а) Принцип программного управления; б) Принцип адресности; в) Принцип однородности памяти; г) Принцип двоичного кодирования.

Вопрос: Переведите число 1101101 из двоичной системы счисления в десятичную.

Варианты: а) 109; б) 105; в) 111; г) 96.

Вопрос: Как представляется отрицательное число -8 в дополнительном коде (8 бит)?

Варианты: а) 11111000; б) 10001000; в) 00001000; г) 11110111.

Вопрос: Какой стандарт описывает представление чисел с плавающей запятой?

Варианты: a) ASCII; б) Unicode; в) IEEE 754; г) ISO 8859-1.

2. Выполнение команд и организация памяти:

Вопрос: Что из перечисленного НЕ является частью цикла выполнения команды?

Варианты: а) Выборка; б) Декодирование; в) Компиляция; г) Выполнение.

Вопрос: Какой компонент процессора отвечает за выполнение арифметических и логических операций?

Варианты: а) АЛУ; б) Регистр флагов; в) Счетчик команд; г) Стек.

Вопрос: Какой тип памяти является самым быстрым?

Варианты: а) Оперативная память; б) Кэш-память; в) Жесткий диск; г) Флеш-память.

Вопрос: Для чего используется виртуальная память?

Варианты: а) Для увеличения объема оперативной памяти; б) Для ускорения доступа к жесткому диску; в) Для хранения данных BIOS; Γ) Для хранения кэш-данных.

3. Устройства ввода-вывода и прерывания:

Вопрос: Что такое DMA?

Варианты: а) Прямой доступ к памяти; б) Динамическое распределение памяти; в)

Деление с остатком; г) Дисковый массив.

Вопрос: Что происходит при возникновении прерывания?

Варианты: а) Процессор прекращает выполнение текущей программы и переходит к обработчику прерывания; б) Процессор игнорирует прерывание и продолжает выполнение текущей программы; в) Процессор сохраняет текущее состояние и выключается; г) Процессор перезагружается.

4. Параллелизм:

Вопрос: Что означает аббревиатура МІМD?

Варианты: а) Много команд, много данных; б) Много инструкций, много данных; в) Много инструкций, одно данное; г) Много команд, одно данное.

5. Производительность:

Вопрос: В каких единицах измеряется производительность процессора в операциях с плавающей запятой?

Варианты: а) MIPS; б) FLOPS; в) GHz; г) MB/s.

Ответы:

1. в)	5. в)	9. a)
2. a)	6. a)	10. a)
3. a)	7. б)	11. б)
4. B)	8. a)	12. б)

5. Перечень вопросов и заданий, выносимых на экзамен

Базовый уровень:

- 1. Что такое машинный цикл? Опишите его основные этапы.
- 2. Что такое команда? Из каких частей она состоит?
- 3. Какие типы команд вы знаете? Приведите примеры.
- 4. Что такое система команд?
- 5. Что такое регистры процессора? Какие типы регистров вы знаете?
- 6. Какова роль арифметико-логического устройства (АЛУ)?
- 7. Какова роль устройства управления (УУ)?
- 8. Что такое микропрограмма?
- 9. Что такое прерывание? Какие типы прерываний существуют?
- 10. Как обрабатываются прерывания в ЭВМ?
- 11. Что такое стек? Как он используется в организации вычислений?
- 12. Объясните принцип работы конвейера команд.

Средний уровень:

- 1. В чем разница между RISC и CISC архитектурами? Какие преимущества и недостатки у каждой из них?
- 2. Как организована работа с памятью в ЭВМ? Что такое прямая, косвенная, регистровая и индексная адресация?
 - 3. Как осуществляется взаимодействие процессора с устройствами ввода-вывода?
- 4. Опишите различные способы организации ввода-вывода (программный, с использованием прерываний, DMA).
 - 5. Как влияют кэш-память и виртуальная память на производительность ЭВМ?
 - 6. Что такое суперскалярная архитектура?
- 7. Что такое многопоточность? В чем разница между аппаратной и программной многопоточностью?

Продвинутый уровень:

- 1. Как реализуются операции с плавающей запятой в ЭВМ?
- 2. Опишите архитектуру современных многоядерных процессоров.

- 3. Какие проблемы возникают при организации параллельных вычислений? Как они решаются?
 - 4. Что такое векторные процессоры? Где они применяются?
- 5. Какие существуют методы оптимизации программного кода для повышения производительности вычислений?
 - 6. Расскажите о современных тенденциях развития архитектуры ЭВМ.

Тема 2. Функциональная и структурная организация процессора

1. Лабораторная работа № 4

1. Выполнить сложение чисел X+Y

	Числа в двоичной системе		Числа в восьмеричной		Числа в шестнадцатеричной	
No	счисл	счисления		системе счисления		числения
	X	Y	X	Y	X	Y
0	0001100	0010110	7761	1322	41B	058
1	1110010	0111101	6367	7714	5B0	B60
2	0101100	0110100	5176	6226	2B4	5ED
3	1111000	0010111	0557	7550	37F	D32
4	0000001	0100111	3727	3323	B98	578

2. Лабораторная работа № 5

Разработайте программу, реализующую указанную формулу, исполнить программу с несколькими наборами исходных данных, проверить правильность результатов.

No	Формула
1.	X = A - 5 (B - 2C) + 2
2.	X = -4A + (B + C) / 4 + 2
3.	X = 7A - 2B - 100 + C
4.	X = -A/2 + 4(B+1) + 3C

3. Тестовые задания по теме «Функциональная и структурная организация процессора»

1. Основные компоненты и их функции:

Вопрос: Какой компонент процессора отвечает за выполнение арифметических и логических операций?

Варианты: а) Устройство управления (УУ); б) Арифметико-логическое устройство (АЛУ); в) Регистровый файл; г) Кэш-память.

Вопрос: Какова основная функция устройства управления (УУ)?

Варианты: а) Выполнение арифметических операций; б) Хранение промежуточных результатов вычислений; в) Формирование и подача управляющих сигналов; г) Обеспечение связи с внешними устройствами.

Вопрос: Что хранится в регистре команд (Program Counter)?

Варианты: а) Текущая выполняемая команда; б) Адрес следующей выполняемой команды; в) Результат последней выполненной операции; г) Код условия.

Вопрос: Для чего используется регистр флагов (Flags Register)?

Варианты: а) Для хранения промежуточных результатов вычислений; б) Для хранения информации о состоянии процессора (например, результат сравнения); в) Для хранения адреса следующей выполняемой команды; г) Для хранения кода операции.

2. Организация регистров:

Вопрос: Что из перечисленного НЕ является типом регистра процессора?

Варианты: а) Регистр общего назначения (РОН); б) Регистр флагов; в) Счетчик команд; г) Оперативная память.

Вопрос: Каково назначение регистра-аккумулятора?

Варианты: а) Хранение одного из операндов и результата операции; б) Хранение адреса следующей выполняемой команды; в) Хранение кода условия; г) Хранение адреса

данных в памяти.

3. Выполнение команд:

Вопрос: Расположите этапы выполнения команды в правильном порядке: 1) Выборка, 2) Декодирование, 3) Выполнение, 4) Запись результата.

Варианты: а) 1-2-3-4; б) 2-1-3-4; в) 1-3-2-4; г) 4-3-2-1.

Вопрос: На каком этапе определяется тип выполняемой команды?

Варианты: а) Выборка; б) Декодирование; в) Выполнение; г) Запись результата.

4. Конвейеризация:

Вопрос: Что такое конвейеризация в процессоре?

Варианты: а) Параллельное выполнение нескольких команд; б) Разделение процесса выполнения команды на этапы, выполняемые параллельно для разных команд; в) Увеличение тактовой частоты процессора; г) Увеличение объема кэш-памяти.

5. Взаимодействие с памятью:

Вопрос: Как процессор обращается к данным в оперативной памяти?

Варианты: а) По имени переменной; б) По адресу ячейки памяти; в) По значению данных; г) По номеру регистра.

Ответы:

1. б)	5. г)	9. б)
2. в)	6. a)	10. б)
3. б)	7. a)	
4. _б)	8. б)	

6. Перечень вопросов и заданий, выносимых на экзамен

Базовый уровень:

- 1. Какие основные функции выполняет процессор?
- 2. Опишите основные компоненты процессора и их назначение.
- 3. Что такое регистры процессора? Какие типы регистров вы знаете?
- 4. Какова роль арифметико-логического устройства (АЛУ)?
- 5. Какова роль устройства управления (УУ)?
- 6. Что такое тактовый генератор и для чего он нужен?
- 7. Опишите этапы выполнения команды процессором.
- 8. Что такое машинный цикл?
- 9. Что такое конвейер команд и как он повышает производительность процессора?

Средний уровень:

- 1. Как организовано взаимодействие между АЛУ, УУ и регистрами процессора?
- 2. Какие методы адресации используются в процессорах? Опишите каждый из них.
- 3. Как процессор взаимодействует с памятью?
- 4. Что такое кэш-память и как она влияет на производительность процессора?
- 5. Как процессор обрабатывает прерывания?
- 6. В чем разница между RISC и CISC архитектурами?
- 7. Что такое микроархитектура процессора?
- 8. Как организована обработка исключительных ситуаций в процессоре?

Продвинутый уровень:

- 1. Опишите принципы работы суперскалярных процессоров.
- 2. Что такое внеочередное выполнение команд и как оно реализуется?
- 3. Как работает предсказание переходов в процессоре?
- 4. Опишите архитектуру современных многоядерных процессоров.
- 5. Какие технологии используются для повышения энергоэффективности процессоров?
- 6. Какие существуют методы оптимизации работы процессора на уровне микроархитектуры?

- 7. Расскажите о современных тенденциях развития процессорных архитектур.
- 8. Как виртуализация влияет на работу процессора?
- 9. В чем особенности организации процессоров для специализированных вычислений (например, графических)?

Тема 3. Организация памяти ЭВМ

1. Лабораторная работа № 6

Разработайте программу сложения C=A+B или (C=A-B) для пар чисел своего варианта. Для самоконтроля проверьте получившиеся результаты в калькуляторе. По каждому варианту укажите какие были установлены флаги после выполнения операции и почему.

Варианты заданий

No	Числа в двоичной системе счисления			Числа в шестнадцатеричной системе счисления			Числа в десятичной системе счисления			
	A	В	A	В	A	В	A	В	A	В
0	0110001	11001	01000	-11100111001	02	772F61	-E9A9690	-FC79	-9773393	85142608
1	1100101	1000101	-1101101	-01010001	8E5	BC70429	-C6F7512	-6B3FFD	-5610998	-569557
2	10001	101100	1001111	-10101111100	C7C4	A1A7136	-9F43EDB	DC87	347643712	900236718
3	00101	000011	10010	-01010110	6B0A	1DFE7	-030909E	8C79	795162	-22871131
4	011000	01111	-101111	-01011010101	96178	B53765	679DA5D7	-EC02C15	9318407	-1364253

2. Лабораторная работа № 7

Используя различные типы адресации (см. режимы адресации - пункты 2,3,4,5) выполнить преобразование массива (результат преобразования записывается в новый массив такого же размера).

Варианты:

- **0.** Переместить заданный массив в другой массив, добавив к диагоналям массива константу. Проконтролировать переполнение при сложении. В случае переполнения прекратить вычисления.
- **1.** Переместить заданный массив в другой массив, поменяв местами четные и нечетные строки массива.
- **2.** Переместить заданный массив в другой массив, поменяв местами четные и нечетные столбцы массива.
- **3.** Переместить четные значения элементов массива в другой массив (на свои же позиции), нечетные значения заменить на 0.
- **4.** Переместить значения элементов массива превышающие 10 в другой массив (на свои же позиции), остальные значения заменить на 0.

3. Лабораторная работа № 8

Выполнить преобразование данных в соответствие с вариантом. Результат вывести на экран. В случае выполнения арифметических операций, выполнить контроль переполнения. Строка (вектор, двумерный массив) за-дается как переменная.

Варианты заданий:

- 0. Преобразовать символьную строку заданной длины, изменив все строчные буквы латинского алфавита на прописные (русские и латинские буквы).
- 1. Определить, сколько цифровых и нецифровых символов присутствует в заданной символьной строке.
- 2. Определить, сколько символов кириллицы и латиницы присутствует в заданной символьной строке.
- 3. Определить, сколько знаков отношения (<,>,=) присутствует в заданной символьной строке.
- 4. Найти в строке подстроку (размером не менее двух символов). Подстрока задается в отдельной переменной. Подсчитать количество вхождений подстроки.
- 5. Инвертировать строку (переписать ее в обратном порядке) для двух случаев: 1) внутри одной переменной; 2) переписав измененную переменную в новую строку (исходная строка остается неизменной).

4. Тестовые задания по теме "Организация памяти ЭВМ"

Часть 1. Выберите один правильный ответ:

- 1. Что такое оперативная память?
- а) энергонезависимая память для долговременного хранения данных
- б) энергозависимая память для временного хранения данных и программ, выполняемых процессором
- в) память, предназначенная для хранения микропрограмм
- г) память, используемая для хранения данных BIOS
- 2. Кэш-память предназначена для:
- а) долговременного хранения данных
- б) ускорения обмена данными между процессором и оперативной памятью
- в) хранения операционной системы
- г) хранения редко используемых данных
- 3. Что характеризует время доступа к памяти?
- а) объем хранимой информации
- б) скорость передачи данных
- в) время, необходимое для чтения или записи данных
- г) количество обращений к памяти в секунду
- 4. Какой тип памяти обычно используется в качестве кэш-памяти?
- a) HDD
- б) SRAM
- в) DRAM
- г) Flash
- 5. Что означает принцип локальности данных?
- а) данные, к которым недавно обращались, с большой вероятностью будут использоваться снова в ближайшее время
- б) данные хранятся в памяти в порядке их использования
- в) данные расположены в памяти близко друг к другу
- г) данные, к которым давно не обращались, с большой вероятностью будут использоваться в ближайшее время
- 6. Виртуальная память используется для:
- а) увеличения объема оперативной памяти за счет использования пространства на жестком диске
- б) хранения данных BIOS
- в) ускорения доступа к оперативной памяти
- г) хранения микропрограмм
- 7. Что такое страничная организация памяти?
- а) способ организации виртуальной памяти, при котором адресное пространство делится на блоки фиксированного размера страницы
- б) способ организации памяти, при котором данные хранятся в виде непрерывных блоков
- в) способ организации кэш-памяти
- г) способ организации памяти на жестком диске

Часть 2. Установите соответствие:

1. Сопоставьте типы памяти с их характеристиками:

Типы памяти:

- а) Оперативная память (RAM)
- б) Постоянная память (ROM)
- в) Кэш-память
- г) Жесткий диск (HDD)

Характеристики:

1) энергонезависимая, используется для хранения ВІОЅ

- 2) энергозависимая, используется для временного хранения данных
- 3) высокая скорость доступа, используется для ускорения работы процессора
- 4) большой объем, низкая скорость доступа, используется для долговременного хранения данных

Часть 3. Ответьте на вопросы:

- 1. Опишите основные принципы организации иерархии памяти.
- 2. В чем преимущества и недостатки кэш-памяти?
- 3. Как работает виртуальная память?
- 4. Объясните понятие \"страничный промах\".

Ответы (Часть 1):

	(,	
1. б			5. a
2. б			6. a
3. в			7. a
4 б			

Ответы (Часть 2):

1. a-2, б-1, в-3, г-4

5. Перечень вопросов и заданий, выносимых на экзамен

Базовый уровень:

- 1. Что такое память ЭВМ? Какие основные функции она выполняет?
- 2. Какие основные характеристики памяти вы знаете (ёмкость, время доступа, стоимость)?
- 3. В чём различие между энергозависимой и энергонезависимой памятью? Приведите примеры.
- 4. Что такое оперативная память (RAM)? Какие её основные типы вы знаете (SRAM, DRAM)?
- 5. Что такое постоянная память (ROM)? Для чего она используется?
- 6. Что такое кэш-память? Как она влияет на производительность системы?
- 7. Опишите принцип иерархической организации памяти.

Средний уровень:

- 1. В чём отличия SRAM от DRAM? Преимущества и недостатки каждого типа.
- 2. Как организована адресация памяти? Что такое сегментация и страничная организация памяти?
- 3. Что такое виртуальная память? Как она работает?
- 4. Что такое страничный промах (page fault)?
- 5. Как кэш-память использует принципы локальности данных?
- 6. Какие методы используются для повышения эффективности кэш-памяти (например, различные стратегии замещения)?
- 7. Опишите различные типы ROM (PROM, EPROM, EEPROM, Flash).
- 8. Что такое контроллер памяти? Какие функции он выполняет?

Продвинутый уровень:

- 1. Как реализуется многоканальный доступ к памяти?
- 2. Какие проблемы возникают при использовании виртуальной памяти? Как они решаются?
- 3. Опишите различные уровни кэш-памяти (L1, L2, L3).
- 4. Что такое TLB (Translation Lookaside Buffer) и для чего он используется?
- 5. Какие технологии используются для повышения скорости работы памяти (например, DDR SDRAM)?
- 6. Расскажите о современных тенденциях развития технологий памяти (например, энергонезависимая оперативная память).
- 7. Как организация памяти влияет на производительность многопроцессорных систем?
- 8. Что такое NUMA (Non-Uniform Memory Access) и как она работает?

Тема 4. Архитектурные особенности организации ЭВМ

1. Лабораторная работа № 9

Реализовать обработчик прерывания (номер прерывания – любой свободный), реализующий выполнение заданных функций.

Варианты заданий:

- 0. Сложение, вычитание, деление, умножение слов.
- 1. Поиск, замена, удаление подстрок с строке байт.
- 2. Удаление пробелов в начале, в конце, всех пробелов в строке.
- 3. Сложение, вычитание, умножение байт заданных массивом.
- 4. Поиск максимума, минимума, среднего значения среди слов (два байта), заданных массивом.
- 5. Операции AND, OR, XOR со машинными словами (два байта), заданными массивом слов и значением, переданным в одном из регистров.

2. Лабораторная работа № 10

Разработать программу выключения роботом всех включенных лампочек в лабиринте (управление роботом см. пример robot.asm). Количество лампочек не ограничено (и находится в разумных пределах). Часть лампочек уже может быть выключено. Робот может стартовать из любой свободной клетки лабиринта. Программа должна быть разработана в формате ассемблера FASM (#fasm#).

3. Тестовые задания по теме "Архитектурные особенности организации ЭВМ"

Часть 1. Выберите один правильный ответ:

- 1. Что является основной характеристикой фон-неймановской архитектуры?
- а) Разделение памяти данных и памяти команд
- б) Хранение данных и команд в едином адресном пространстве
- в) Параллельная обработка данных и команд
- г) Отсутствие программного счетчика
- 2. К каким архитектурам относится архитектура с сокращенным набором команд (RISC)?
 - a) CISC
 - б) Harvard
 - в) Von Neumann
 - г) Stack
 - 3. Что такое конвейеризация?
- а) Способ повышения производительности за счет одновременного выполнения нескольких команд
 - б) Метод организации памяти
 - в) Способ адресации памяти
 - г) Тип операционной системы
 - 4. Что из перечисленного НЕ является компонентом процессора?
 - а) Арифметико-логическое устройство (АЛУ)
 - б) Устройство управления (УУ)
 - в) Жесткий диск
 - г) Регистры
 - 5. Что такое кэш-память?
 - а) Энергонезависимая память для хранения данных
- б) Быстрая буферная память, используемая для ускорения доступа к оперативной памяти
 - в) Память, используемая для хранения программ BIOS

- г) Виртуальная память
- 6. В чем основное отличие гарвардской архитектуры от фон-неймановской?
- а) Гарвардская архитектура использует раздельные адресные пространства для данных и команл
 - б) Гарвардская архитектура не использует регистры
 - в) Гарвардская архитектура не поддерживает конвейеризацию
 - г) Гарвардская архитектура использует стековую организацию памяти

Часть 2. Установите соответствие:

1. Сопоставьте компоненты компьютера с их функциями:

Компоненты:

- а) Процессор
- б) Оперативная память
- в) Жесткий диск
- г) Материнская плата

Функции:

- 1) Хранение данных и программ во время работы компьютера
- 2) Обработка данных и выполнение команд
- 3) Долговременное хранение данных
- 4) Объединение всех компонентов компьютера

Часть 3. Ответьте на вопросы:

- 1. Опишите основные принципы работы фон-неймановской архитектуры.
- 2. В чем преимущества и недостатки RISC и CISC архитектур?
- 3. Как конвейеризация влияет на производительность процессора?
- 4. Какие типы прерываний существуют и для чего они используются? Ответы (Часть 1):

1. 6 2. B 5. 6 3. a 6. a

Ответы (Часть 2): 1. а-2, б-1, в-3, г-4

6. Перечень вопросов и заданий, выносимых на экзамен

Базовый уровень:

- 1. Что такое архитектура ЭВМ?
- 2. Опишите основные принципы фон-неймановской архитектуры.
- 3. Что такое гарвардская архитектура? В чем её отличие от фон-неймановской?
- 4. Какие основные компоненты входят в состав ЭВМ?
- 5. Что такое система команд?
- 6. Что такое регистры процессора и для чего они используются?
- 7. Что такое шина данных, шина адреса и шина управления?

Средний уровень:

- 1. В чем преимущества и недостатки фон-неймановской и гарвардской архитектур?
- 2. Что такое CISC и RISC архитектуры? Сравните их.
- 3. Что такое конвейеризация и как она влияет на производительность процессора?
- 4. Опишите различные способы организации ввода-вывода (программный, с использованием прерываний, DMA).
 - 5. Что такое прерывания и как они обрабатываются процессором?
 - 6. Как работает кэш-память и как она влияет на производительность системы?
 - 7. Что такое виртуальная память и как она организована?

Продвинутый уровень:

- 1. Опишите архитектуру современных многоядерных процессоров.
- 2. Что такое суперскалярность и внеочередное выполнение команд?
- 3. Как реализуется параллелизм на уровне команд и на уровне данных?
- 4. Какие архитектурные решения используются для повышения энергоэффективности ЭВМ?
 - 5. Что такое векторные процессоры и где они применяются?
- 6. Расскажите о современных тенденциях развития архитектуры ЭВМ (например, нейроморфные вычисления).
 - 7. Как виртуализация влияет на архитектуру ЭВМ?
- 8. Какие особенности архитектуры применяются в специализированных вычислительных системах (например, графических процессорах, сигнальных процессорах)?

6.4 Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине (модулю)

<u>Оценочные средства размещены на http://moodle.asu-edu.ru</u>. Допуск студентов осуществляется по расписанию проведения аудиторных занятий и сдачи отчетов по выполнению самостоятельной работы.

Полный комплект оценочных материалов по дисциплине (модулю) (фонд оценочных средств) хранится в электронном виде на кафедре, утверждающей рабочую программу дисциплины (модуля), и в Центре мониторинга и аудита качества обучения.

Итоговая оценка по промежуточной аттестации выставляется в соответствии с Положением АГУ о балльно-рейтинговой системе (БАРС). Итоговая оценка складывается из баллов, полученных студентов за текущую успеваемость в течении семестра (максимум 50 баллов) и баллов, полученных студентом на экзамене (максимум 50 баллов). Для получения положительной оценки студенту необходимо набрать в семестре минимально 60 баллов.

Экзамен проходит в форме устного собеседования со студентом по билетам, составленным из вопросов. Один билет включает в себя 2 вопроса. Выбор билета осуществляется в случайном порядке. На подготовку студенту отводится не менее 40 мин. Во время проведения экзамена студенту запрещено пользоваться сотовым телефоном и иными средствами связи, персональным компьютером, сетью Интернет, заготовленными заранее ответами и т.п. Студент, получивший замечание в использовании вышеперечисленного, удаляется с экзамена с выставлением *О баллов*. Во время подготовки к устному ответу студенты могут делать записи на чистом листе, а затем взять их для ответа.

Преподаватель, реализующий дисциплину (модуль), в зависимости от уровня подготовленности обучающихся может использовать иные формы, методы контроля и оценочные средства, исходя из конкретной ситуации.

Таблица 9 – Примеры оценочных средств с ключами правильных ответов

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
сред	ства, в то	использовать современные инфором числе отечественного при деятельности.		программные ении задач
1.	Задание закрытого типа	Вопрос: Какой принцип архитектуры фон Неймана подразумевает хранение данных и инструкций в одной и той же памяти? Варианты: а) Принцип программного управления; б)	в)	0,5

№ п/п	Тип задания	Формулировка задания	Правильный ответ	Время выполнения (в минутах)
		Принцип адресности; в) Принцип однородности памяти; г) Принцип двоичного кодирования.		
2.		Вопрос: Переведите число 1101101 из двоичной системы счисления в десятичную. Варианты: а) 109; б) 105; в) 111; г) 96.	a)	0,5
3.		Вопрос: Что из перечисленного НЕ является частью цикла выполнения команды? Варианты: а) Выборка; б) Декодирование; в) Компиляция; г) Выполнение.	в)	0,5
4.		Вопрос: Что такое DMA? Варианты: а) Прямой доступ к памяти; б) Динамическое распределение памяти; в) Деление с остатком; г) Дисковый массив.	a)	0,5
5.		Вопрос: Что означает аббревиатура МІМD? Варианты: а) Много команд, много данных; б) Много инструкций, много данных; в) Много инструкций, одно данное; г) Много команд, одно данное.	б)	0,5
		ен инсталлировать программное	и аппаратное о	беспечение для
	•	и автоматизированных систем.	7)	0.5
6.	Задание закрытого типа	Какой тип памяти обычно используется в качестве кэшпамяти? а) HDD б) SRAM в) DRAM г) Flash	в)	0,5
7.		Что означает принцип локальности данных? а) данные, к которым недавно обращались, с большой вероятностью будут использоваться снова в ближайшее время б) данные хранятся в памяти в порядке их использования в) данные расположены в памяти близко друг к другу	a)	0,5

№	Тип	Формулировка задания	Правильный	Время выполнения
п/п	задания	i opinjumpozna sagamini	ответ	(в минутах)
		г) данные, к которым давно не обращались, с большой вероятностью будут		
		использоваться в ближайшее время		
8.		Что такое оперативная память? а) энергонезависимая память для долговременного хранения	6)	0,5
		данных б) энергозависимая память для временного хранения данных и программ, выполняемых		
		процессором в) память, предназначенная для хранения микропрограмм		
		г) память, используемая для хранения данных BIOS		
9.		Вопрос: Расположите этапы выполнения команды в правильном порядке: 1) Выборка, 2) Декодирование, 3) Выполнение, 4) Запись результата. Варианты: а) 1-2-3-4; б) 2-1-3-	a)	0,5
		4; в) 1-3-2-4; г) 4-3-2-1.		
10.		Вопрос: Как процессор обращается к данным в оперативной памяти? Варианты: а) По имени переменной; б) По адресу ячейки памяти; в) По значению	6)	0,5

Таблица 10 – Технологическая карта рейтинговых баллов по дисциплине (модулю)

№ п/п	Контролируемые мероприятия	Количество мероприятий / баллы	Максимальное количество баллов	Срок представления				
Осн	Основной блок							
1.	Ответ на занятии	5/2	10	По				
		312	10	расписанию				
2.	Выполнение лабораторной работы	10/3	30	По				
	10/3		50	расписанию				
Bce	Γ0		40	_				
Бло	Блок бонусов							
3.	Посещение занятий	9/1	9	По				
		9/1	9	расписанию				

№ п/п	Контролируемые мероприятия	Количество мероприятий / баллы	Максимальное количество баллов	Срок представления	
4.	Своевременное выполнение всех заданий	10/1	10	По расписанию	
Всего			19	_	
Дополнительный блок					
5.	Экзамен		31		
Всего			30	-	
ИТОГО			100	-	

Таблица 11 – Система штрафов (для одного занятия)

Показатель		
Опоздание (два и более)		
Не готов к практической части занятия		
Нарушение учебной дисциплины		
Пропуски лекций без уважительных причин (за одну лекцию)		
Пропуск занятий без уважительной причины (за одно занятие)		
Нарушение правил техники безопасности		
Отсутствие конспектов лекций, семинарских занятий, первоисточников при		
начислении баллов не учитываются		

Таблица 12 — Шкала перевода рейтинговых баллов в итоговую оценку за семестр по дисциплине (модулю)

Сумма баллов	Оценка по 4-балльной шкале
90–100	5 (отлично)
85–89	
75–84	4 (хорошо)
70–74	
65–69	2 (уууар уатраруугану ууа)
60–64	3 (удовлетворительно)
Ниже 60	2 (неудовлетворительно)

7 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1 Основная литература:

- 1. Авдеев В.А., Организация ЭВМ и периферия с демонстрацией имитационных моделей / Авдеев В.А. М. : ДМК Пресс, 2014. 708 с. ISBN 978-5-94074-966-0 -
- 2. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785940749660.html.
- 3. Рыбальченко М.В., Организация ЭВМ и периферийные устройства : учебное пособие
- 4. / Рыбальченко М. В. Ростов н/Д : Изд-во ЮФУ, 2017. 84 с. ISBN 978-5-9275- 2523- 2 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785927525232.html.
- 5. Баранникова И.В., Вычислительные машины, сети и системы: функциональноструктурная организация вычислительных систем: учеб. пособие / И.В. Баранникова, А.Н. Гончаренко - М.: МИСиС, 2017. - 103 с. - ISBN 978-5-906846-93-8 - Текст:
- 6. электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785906846938.html.

7.2 Дополнительная литература:

- 1. Куляс О.Л., Курс программирования на ASSEMBLER : учебное пособие / Куляс О.Л. М. : СОЛОН-ПРЕСС, 2017. 220 с. ISBN 978-5-91359-245-3 Текст : электронный // ЭБС
- 2. "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785913592453.html.
- 3. Хорошевский В.Г., Архитектура вычислительных систем: Учеб. пособие / Хорошевский В.Г. М.: Издательство МГТУ им. Н. Э. Баумана, 2008. 520 с. (Информатика в техническом университете) ISBN 978-5-7038-3175-5 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785703831755.html.
- 7.3 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимый для освоения дисциплины (модуля)
 - 1. ЭБС "КОНСУЛЬТАНТ СТУДЕНТА" Студенческая электронная библиотека: http://www.studentlibrary.ru.

8 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Для проведения лабораторных занятий необходима аудитория, оснащенная компьютерными рабочими местами студентов и доступом в Интернет.

Рабочая программа дисциплины (модуля) при необходимости может быть адаптирована для обучения (в том числе с применением дистанционных образовательных технологий) лиц с ограниченными возможностями здоровья, инвалидов. Для этого требуется заявление обучающихся, являющихся лицами с ограниченными возможностями здоровья, инвалидами, или их законных представителей и рекомендации психолого-медико-педагогической комиссии. Для инвалидов содержание рабочей программы дисциплины (модуля) может определяться также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).