МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Астраханский государственный университет имени В. Н. Татищева» (Астраханский государственный университет им. В. Н. Татищева)

СОГЛАСОВАНО	УТВЕРЖДАЮ
Руководитель ОПОП	Заведующий кафедрой ХМ
А.В. Великородов	Л.А. Джигола
21 июня 2024 г.	21 июня 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ

Составитель	Тырков А.Г., профессор, д.х.н., профессор
Направление подготовки Направленность (профиль) ОПОП	04.03.01 «ХИМИЯ» Медицинская ифармацевтическая химия
Квалификация (степень)	бакалавр
Форма обучения	очно-заочная
Год приема	2021
Курс	4
Семестр	7

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- **1.1. Целями освоения дисциплины «Технология получения биологически активных веществ»** ознакомление студентов с современным состоянием важного направления в фармации и медицине получения с помощью различных био-технологических методов (макро- и микроорганизмов, биокатализаторов, ферментов и т.п.) биологически активных веществ и, в частности, лекарственных средств.
- 1.2. Задачи освоения дисциплины: представить целостную систему теоретических основ биотехноло-гии, показать взаимосвязь процессов при разработке новых и совершенствовании, уни-фикации и валидации существующих методов контроля качества биотехнологических лекарственных средств на этапах разработки, производства и потребления; рассмотреть пути реализации общих принципов фармацевтической химии: при создании новых ле-карственных веществ и при оценке качества лекарственных средств; формирование у студентов практических умений и навыков изготовления лекарств методами биотехно-логии, оценки качества сырья, приготовления питательных сред, полупродуктов и целе-вых продуктов; дать ориентацию студентам в свойствах и анализе биотехнологических лекарственных средств в соответствии с современными требованиями к качеству, осо-бенностями получения и перспективами создания эффективных и безопасных лекар-ственных средств биотехнологическими методами.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

- 2.1. Учебная дисциплина «Технология получения биологически активных веществ» относится к элективной части учебного плана подготовки бакалавров химии и осваивается в 7 семестре. Учебный курс логически связан с теоретическими основами органической, фармацевтической химии, биологии с основами ботаники. Следовательно, «входные» знания и умения обучающегося связаны со знанием теоретических основ вышеобозначенных учебных химических и биологических дисциплин.
- 2.2. Для изучения данной учебной дисциплины (модуля) необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами (модулями):
 - органическая химия (основные классы органических соединений и их превращения);
 - фармацевтическая химияхимия (микробиологические процессы синтеза антибиотиков);
 - биология с основами ботаники (биология микроорганизмов).

Знания: классы органических соединений, биологические функции важнейших классов соединений, лекарственные препараты, полученные микробиологическим синте-зом.

Умения: определять качественный и количественный состав органических соедине-ний и лекарственных препаратов.

Навыки и (или) опыт деятельности: владение навыками химического эксперимента; владение методами безопасного обращения с химическими материалами с учетом их физических и химических свойств, владение методами регистрации и обработки результатов химических экспериментов.

2.3. Перечень последующих учебных дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем):

- производственная практика (НИР).

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с $\Phi \Gamma O C$ 3++ и ОПОП по данному направлению подготовки:

в) профессиональных (ПК):

ПК-3. «Способен готовить объекты исследования (вещества синтетического и природного про-

исхождения, материалы и пр.) и проводить их изучение по заданным методикам».

Таблица 1 - Декомпозиция результатов обучения

Voz w wowene power wowene	Планируем	иые результаты освоения д	цисциплины	
Код и наименование компетенции	Знать (1)	Уметь (2)	Владеть (3)	
ПК-3 Способен готовить объекты исследования (вещества синтетического и природного происхождения, материалы и пр.) и проводить их изучение по заданным методикам	химические связи и строение органических соединений, электронные эффекты в органических молекулах, свойства и способы получения	анализировать научную литературу, оценивать возможность протекания химической реакции и предсказывать ее результат, анализировать получен-	навыками анализа реакционной способности органических соединений в зависимости от строения, практической работы в химической лаборатории,	
	основных классов соединений, генетическую связь между ними, основные типы промежуточных соединений	ные данные	определения констант и других параметров химических веществ	

Vод компотоници	Планируемые результаты освоения дисциплины					
Код компетенции	Знать (1)		Уметь (2)		Владеть (3)	
ПК-3	ИОПК-3.1. Способы		ИОПК-3.2.	Проводить	ИОПК-3.3. Способами про-	
	проведения эксперимен-		эксперимента	альные рабо-	ведения эксперименталь-	
	тальных работ по гото-		ты по готовы	м методикам	ных работ по готовым ме-	
	вым методикам				тодикам	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины в соответствии с учебным планом составляет 2 зачетные единицы (72 часа).

Трудоемкость отдельных видов учебной работы студентов очной форме обучения приведена в таблице 2.

Таблица 2 - Структура и содержание дисциплины

	10	<i>J</i> I							
NC.		Ca		актная (в часа	работа x)	Ca	ам. раб		ны текущего контроля ваемости <i>(по неделям</i>
No	Наименование	Ce-	Л	ПЗ	ЛР	КР	Cl)	семестра)
п/п	радела (темы)	местр							ма промежуточной ат-
									гации (по семестрам)
1	Современная	7		2			14	1001	Собеседование
1	биотехнология -								
	одно из ос-								
	новных направ-								
	лений научно-								
	технического								
	прогресса								
2	Биообъекты-	7		3			14		Собеседование
	продуценты ле-								
	чебных, профи-								
	лактических и								
	диагностических								
	средств. Класси-								
	фикация биообъ-								
	ектов	_							
3	Инженерная эн-	7		3			10		Собеседование
	зимология. Им-								
	мобилизо-ванные								
	биообъекты в								
	биотехнологиче-								
	ском производ-								

	стве					
4	Биосинтез. Моле-	7	3		10	Собеседование
	кулярные меха-					
	низмы внутри-					
	клеточной регу-					
	ляции и упрале-					
	ние биосинтезом					
5	Биотехнология	7	3		10	Собеседование
	первичных и вто-					
	ричных метабо-					
	литов					
	Итого		14		58	7 семестр зачет

Условные обозначения:

Л – занятия лекционного типа; ПЗ – практические занятия, семинары,

ЛР – лабораторные работы; СР - самостоятельная работа по отдельным темам; КР - курсовая работа

Таблица 3 - Матрица соотнесения разделов, тем учебной дисциплины (модуля) и формируемых компетенций

		Компетенции	
Темы, разделы дисциплины	Кол-во часов	ПК-3	Σ общее количество компетенций
Современная биотехнология - одно из основных направлений научно-технического прогресса	16	+	1
Биообъекты-продуценты лечебных, профилактических и диагностических средств. Классификация биообъектов	17	+	1
Инженерная энзимология. Иммобилизованные биообъекты в биотехнологическом производстве	13	+	1
Биосинтез. Молекулярные механизмы внутриклеточной регуляции и упраление биосинтезом	13	+	1
Биотехнология первичных и вторичных метаболитов	13	+	1
Итого	72		

Содержание учебной дисциплины.

Тема 1. Современная биотехнология - одно из основных направлений научнотехнического прогресса. Биотехнология как наука и сфера производства. История биотехнологии и этапы ее развития. Эмпирическая биотехнология. Научная биотехнология (работы Пастера). Современная биотехнология (установление структуры ДНК и природы гена). Роль биотехнологии в промышленности и сельском хозяйстве. Биотехнология и природные ресурсы. Биотехнология и энергетика. Биогаз. Применение биотехнологических методов в горнодобывающей, и нефтеперерабатывающей промышленности. Реализация достижений молекулярной генетики, молекулярной биологии и биоорганической химии в развитии биотехнологии. Химическая технология и биотехнология. Комбинирование биосинтеза и органического синтеза при получении и производстве современных лекарств. Биотехнология и новые методы анализа и контроля. Биосенсоры и биодатчики. Новые материалы (биополимеры), получаемые биотехнологическими методами. Биотехнология и интенсификация сельскохозяйственного производства. Биотехнологические ме-тоды повышения продуктивности сельскохозяйственных и лекарственных растений и животных. Новые методы культивирования растений. Новые виды кормов. Биорегуляция продуктивности лекарственных растений. Биотехнология и пищевая промышленность. Совершенствование путей переработки пищевых продуктов. Биодобавки и новые разновидности пищевых продуктов. Биотехнология и экология. Пути решения проблем экологии и охраны окружающей среды методами биотехнологии. Переработка и утилизация промышленных отходов. Очистка промышленных стоков. Детоксикация и биодеградация ксенобиотиков. Прогрессивность биотехнологии в экологическом аспекте. Биотехнология преобразования солнечной энергии. Биотехнология и медицина. Биотехнология и понимание основ патологии инфекционных, онкологических и наследственных заболеваний. Биотехнология и фармация. Лекарственные средства, витамины, биологические активные добавки производящиеся биотехнологическим путем. Биотехнологическая аппаратура в создании и производстве лекарственных средств. Ферментер. Биореактор.

Тема 2. Биообъекты - продуценты лечебных, профилактических и диагностических средств. Классификация биообъектов. Макрообъекты животного происхождения. «Лестница живых существ». Вирусы. Микроорганизмы-прокариоты (эубактерии, актиномицеты), микроорганизмы-эукариоты (дрожжи, плесневые грибы, водоросли, простейшие), высшие растения, морские беспозвоночные, паукообразные, насекомые, рыбы, амфибии, рептилии, птицы, млекопитающие. Основные группы, получаемые с помощью биообъектов биологически активных веществ. Человек как объект иммунизации и донор. Человек как продуцент низко- и высокомолекулярных корректоров гомеостаза. Человек как продуцент иммунопрепаратов. Культура тканей человека и других млекопитающих. Основные группы получаемых биологически активных веществ. Этические проблемы, связанные с использованием человека как биообъекта и их преодоление с помощью возможностей генной инженерии. Биообъекты растительного происхождения. Дикорастущие растения. Культурные растения. Водоросли. Культуры растительных тканей. Основные группы получаемых из растительных объектов биологически активных веществ. Биотех-нология производства первичных и вторичных метаболитов.(аминокислоты, витамины, антибиотиков (фитонцидов), стероидов). Биообъекты – микроорганизмы. Эукариоты (простейшие грибы, дрожжи). Прокариоты (актиномицеты, эубактерии). Вирусы. Основные группы получаемых биологически активных соединений. Биообъекты - макромолекулы с ферментативной активностью. Биообъекты – ферменты, используемые в качестве промышленных биокатализаторов. Промышленные биокатализаторы на основе индивидуальных ферментов и мультиферментных комплексов. Биоконверсия (биотрансформация) при получении гормонов, стероидов, витаминов, антибиотиков и других биологически актив-ных соединений.

Тема 3. Инженерная энзимология. Иммобилизованные биообъекты в биотехнологическом производстве. Инженерная энзимология и повышение эффективности биообъектов (индивидуальных ферментов, ферментных комплексов и клеток продуцентов) в условиях производства. Иммобилизованные (на нерастворимых носителях) биообъекты и их многократное использование. Ресурсосбережение. Экологические преимущества. Экономическая целесообразность. Повышение качества препаратов лекарственных веществ (гарантия высокой степени очистки, отсутствия белковых примесей). Нерастворимые носители органической и неорганической природы. Микроструктура носителей. Иммобилизация за счет образования ковалентных связей между ферментом и носителем. Предварительная активация носителя. Механизм активации. Влияние иммобилизации на их субстратный спектр и кинетические характеристики фермента. Адсорбция ферментов на инертных носителях и ионообменниках. Причины частичных ограничений использования этого метода иммобилизации. Иммобилизация ферментов путем включения в ячейки геля. Органические и неорганические гели. Микрокапсулирование ферментов как один из способов их иммобилизации. Размеры и состав оболочки микрокапсул. Иммобилизация це-лых клеток микроорганизмов и растений. Моноферментные биокатализаторы на основе целых клеток. Проблемы диффузии субстрата в клетку и выхода продукта реакции. Пути повышения проницаемости оболочки у иммобилизуемых клеток, использование ростового цикла для иммобилизации клеток в наиболее продуктивной фазе. Особенности физиологии клеток, находящихся в ячейках геля. Проблемы иммобилизации продуцентов при локализации целевого продукта внутри клетки. Пути решения этих проблем. Ферменты как промышленные биокатализаторы. Использование иммобилизованных ферментов при производстве полусинтетических В-лактамных антибиотиков, трансформации стероидов и разделении рацематов аминокислот на стереоизомеры. Создание биокатализаторов второго поколения на основе одновременной иммобилизации продуцентов и ферментов. Производственные типы биореакторов для иммобилизованных ферментов и клеток продуцентов. Иммобилизованные ферменты и лечебное питание. Удаление лактозы из молока с помощью иммобилизованной β-галактозидазы.

Тема 4. Биосинтез. Молекулярные механизмы внутриклеточной регуляции и управление биосинтезом. Управление биосинтезом первичных и вторичных метаболитов. Индукция и репрессия синтеза ферментов. Функциональные участки оперона. Механизмы регуляции действия генов и их использование в биотехнологических процессах. Схема Жакоба и Мано. Ингибирование активности ферментов по принципу обратной связи (ретроингибирование). Аллостерические ферменты. Значение этого механизма в регуляции жизнедеятельности клетки и пути преодоления ограничений биосинтеза целевых продуктов у суперпродуцентов. Создание мутантов с нарушением аллостерического центра у ключевых ферментов биосинтетических путей. Оптимизация подбора сред (среды с уменьшенным содержанием конечных продуктов биосинтетических путей). Строгий (stringent) аминокислотный контроль метаболизма. Гуанозинтетрафосфат как биорегулятор. Рибосома как сенсорная органелла. Ассоциированная с рибосомой пирофосфаттранс-фераза. Rel A+-и Rel A-штаммы. Видовая специфичность структуры гуанозинфосфатных регуляторов. Биосинтез различных целевых биотехнологических продуктов и роль систе-мы регуляции метаболизма, обусловленной гуанозинтетрафосфатом. Защита рекомбинантных нуклеиновых кислот и белков от нуклеаз и протеаз продуцента. Регуляция усвоения азотсодержащих соединений. Глутамин, глутамат, аспартат и их роль в ключевых реакциях обеспечения клетки-продуцента азотом. Глутамин-синтаза – главная мишень для регуляторных воздействий применительно к конкретным целям биотехнологии. Понятие кумулятивного ретроингибирования. Ингибирование активности глутамин-синтазы за счет аденилирования. Деаденилирование и состав среды. Ион аммония как регрессор синтеза глутамина и его метаболитов. Катаболитная регрессия (глюкозный эффект) и подавление синтеза катаболических ферментов. Транзиентная репрессия. Исключение индуктора. Механизм катаболитной репрессии. Циклический 3'5'-аденозинмонофосфат (цАМФ).

Тема 5. Биотехнология первичных и вторичных метаболитов. Биотехнология аминокислот. Биологическая роль аминокислот и их применение в качестве лекарственных средств. Химический и химико-энзиматический синтез аминокислот. Проблемы стереоизомерии. Разделение стереоизомеров с использованием ферментативных методов (ацилаз микроорганизмов). Микробиологический синтез аминокислот. Создание суперпродущентов аминокислот. Особенности регуляции и схемы синтеза различных аминокислот у разных видов микроорганизмов. Мутанты и генно-инженерные штаммы-продуценты аминокислот. Получение аминокислот с помощью иммобилизованных клеток и ферментов. Основные пути регуляции биосинтеза и его интенсификация. Механизмы биосинтеза глутаминовой кислоты, лизина, треонина. Биотехнология белковых лекарственных веществ. Биотехно-логия белковых лекарственных веществ. Рекомбинантные белки, принадлежащие к различным группам физиологически активных веществ. Инсулин. Источники получения. Видовая специфичность. Иммуногенные примеси. Перспективы имплантации клеток, продуцирующих инсулин. Рекомбинантный инсулин человека. Конструирование плазмид. Выбор штамма микроорганизма. Выбор лидерной последовательности аминокислот. Отщеп-ление лидерных последовательностей. Методы выделения и очистки полупродуктов. Сборка цепей. Контроль за правильным образованием дисульфидных связей. Ферментативный гидролиз проинсулина. Альтернативный путь получения рекомбинантного инсулина; синтез А- и В-цепей в разных культурах микробных клеток. Проблема освобожде-ния рекомбинантного инсулина от эндотоксинов микроорганизмов-продуцентов. Биотехнологическое производство рекомбинантного инсулина. Экономические аспекты. Создание рекомбинантных белков «второго поколения» на примере инсулина. Интерферон (Ин-терфероны). Классификация, а., в., у. Интерфероны. Интерфероны при вирусных и онкологических заболеваниях. Видоспецифичность интерферонов Ограниченные возможности получения α- и γ-интерферонов из лейкоцитов и Т-лимфоцитов. Лимфобластоидный интерферон. Методы получения βинтерферона при культивировании фибробластов. Индукторы интерферонов. Их природа. Механизм индукции. Промышленное производство интерферонов н аоснове природных источников. Синтез различных классов интерферона человека в генетически сконструированных клетках микроорганизмов. Экспрессия генов, встроенных в плазмиду. Вариации вконформации синтезируемых в клетках микроорганизмов молекул интерферонов за счет неупорядоченного замыкания дисульфидных связей. Проблемы стандартизации. Производство рекомбинантных образцов интерферона и политика различных фирм на международном рынке. Интерлейкины. Механизм биологической активности. Перспективы практического применения. Микробиологический синтез интерлейкинов. Получение продуцентов методами генетической инженерии. Перспективы биотехнологического производства. Гормон роста человека. Механизм биологической активности и перспективы применения в медицинской практике.Микробиологический синтез. Конструирование продуцентов. Ферментные препараты. Ферменты в качестве лекарственных средств. Протеолитические ферменты.

5. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕПОДАВАНИЮ И ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Указания для преподавателей по организации и проведению учебных занятий по дисциплине (модулю)

Практические занятия проводятся через неделю в объеме 2 часа. По окончании изучения каждой темы студенты сдают собеседование. По окончании прохождения курса студенты сдают зачет.

Перечень учебно-методического обеспечения для обучающихся по дисциплине:

1. Колодязная, В. А. Биотехнология : учебник / под ред. Колодязной В. А. , Самотруевой М. А. - Москва : ГЭОТАР-Медиа, 2020. - 384 с. - ISBN 978-5-9704-5436-7. - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL :

https://www.studentlibrary.ru/book/ISBN9785970454367.html (ЭБС «Консультант студен-та»)

5.2. Указания для обучающихся по освоению дисциплины (модуля)

Таблица 4 - Содержание самостоятельной работы обучающихся

Номер		Кол-во	Формы
-	Темы/вопросы, выносимые на самостоятельное изучение		1
темы		часов	работы
1	Современная биотехнология – одно из основных направлений научно-	14	Практическое
	технического прогресса		занятие
2	Биообъекты - продуценты лечебных, профилактических и диагности-	14	Практическое
	ческих средств. Классификация биообъектов		занятие
3	Инженерная энзимология. Иммобилизованные биообъекты в биотех-	10	Практическое
	нологическом производстве.		занятие
4	Биосинтез. Молекулярные механизмы внутриклеточной регуляции и	10	Практическое
	управление биосинтезом.		занятие
5	Биотехнология первичных и вторичных метаболитов	10	Практическое
			занятие

5.3. Виды и формы письменных работ, предусмотренных при освоении дисциплины (модуля), выполняемые обучающимися самостоятельно.

Выполнение и оформление лабораторных работ по курсу «Технология получения биологически активных веществ» осуществляется в соответствии с учебной программой, размещенной на платформе Moodle.

- 1. Биотехнология как наука и сфера производства. История биотехнологии и этапы ее развития.
- 2. Роль биотехнологии в промышленности и сельском хозяйстве. Биотехнология и природные ресурсы.

- 3. Реализация достижений молекулярной генетики, молекулярной биологии и биоорганической химии в развитии биотехнологии.
- 4. Комбинирование биосинтеза и органического синтеза при получении и производстве современных лекарств.
- 5. Биотехнология и фармация.
- 6. Вирусы.
- 7. Биотехнология производства первичных и вторичных метаболитов.
- 8. Биообъекты макромолекулы с ферментативной активностью, ферменты, используемые в качестве промышленных биокатализаторов.
- 9. Органические и неорганические гели.
- 10. Ферменты как промышленные биокатализаторы.
- 11. Основные этапы развития генетики.
- 12. Управление биосинтезом первичных и вторичных метаболитов.
- 13. Биотехнология аминокислот.
- 14. Особенности регуляции и схемы синтеза различных аминокислот у разных видов микроорганизмов.
- 15. Биотехнология белковых лекарственных веществ.
- 16. Биотехнологические методы повышения продуктивности лекарственных растений. регуляторы роста растений.
- 17. Биотехнология стероидных гормонов.

6. ОБРАЗОВАТЕЛЬНЫЕ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

В соответствии с требованиями ФГОС ВО по направлению подготовки реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в объеме 4 ч. (из них 4 ч лекций) в сочетании с внеаудиторной работой с целью формирования и развития требуемых компетенций обучающихся.

6.1. Образовательные технологии

Перечень образовательных технологий сведен в таблицу.

Таблица 5 — Образовательные технологии, используемые при реализации учебных занятий

Раздел, тема	Форма учебного занятия				
дисциплины	Лекция	Практическое занятие,	Лабораторная		
		семинар	работа		
Современная биотех-	Не предусмотрена	Выполнение и отчет по	Не предусмотрена		
нология - одно из ос-		практической работе			
новных направлений					
научно-технического					
прогресса					
Биообъекты-	Не предусмотрена	Выполнение и отчет по	Не предусмотрена		
продуценты лечебных,		практической работе			
профи-лактических и					
диагностических					
средств. Классифика-					
ция биообъектов					
Инженерная энзимоло-	Не предусмотрена	Выполнение и отчет по	Не предусмотрена		
гия. Иммобилизо-		практической работе			
ванные биообъекты в					
биотехнологическом					

производстве			
Биосинтез. Молекуляр-	Не предусмотрена	Выполнение и отчет по	Не предусмотрена
ные механизмы внут-		практической работе	
риклеточной регуляции			
и упраление биосинте-			
30M			
Биотехнология первич-	Не предусмотрена	Выполнение и отчет по	Не предусмотрена
ных и вторичных мета-		практической работе	
болитов			

6.2. Информационные технологии

Интернет-ресурсы <u>www.asu.edu.ru</u> (представлены учебно-методические материалы для усвоения студентами курса; Электронный образовательный ресурс по курсу «Технология получения биологически активных веществ», представленный на платформе moodle по адресу http://moodle.asu.edu.ru

Для оперативной связи со студентами предполагается возможность использования электронной почты преподавателя.

Справочная правовая система Консультант Плюс.

Содержится огромный массив справочной правовой информации, российское и региональное законодательство, судебную практику, финансовые и кадровые консультации, консультации для бюджетных организаций, комментарии законодательства, формы документов, проекты нормативных правовых актов, международные правовые акты, правовые акты, технические нормы и правила.

http://www.consultant.ru

6.3. Программное обеспечение, современные профессиональные базы данных и информационные справочные системы

6.3.1. Программное обеспечение

- Лииензионное программное обеспечение

- Transfer of the second of th	
Наименование программного обеспечения	Назначение
Платформа дистанционного обучения LMS Moodle «Электронное образование»	Виртуальная обучающая среда

6.3.2. Современные профессиональные базы данных и информационные справочные системы

Наименование современных профессиональных баз данных, информационных справочных систем

Универсальная справочно-информационная полнотекстовая база данных периодических изданий ООО «ИВИС»

http://dlib.eastview.com

Имя пользователя: AstrGU

Пароль: AstrGU

Электронные версии периодических изданий, размещённые на сайте информационных ресурсов

www.polpred.com

Электронный каталог Научной библиотеки АГУ на базе MARK SQL НПО «Информ-систем» https://library.asu.edu.ru/catalog/

Корпоративный проект Ассоциации региональных библиотечных консорциумов (АРБИКОН) «Межрегиональная аналитическая роспись статей» (МАРС) — сводная база данных, содержащая полную аналитическую роспись 1800 названий журналов по разным отраслям знаний. Участники проекта предоставляют друг другу электронные копии отсканированных статей из

Наименование современных профессиональных баз данных, информационных справочных систем

книг, сборников, журналов, содержащихся в фондах их библиотек. http://mars.arbicon.ru

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Паспорт фонда оценочных средств.

При проведении текущего контроля и промежуточной аттестации по дисциплине «Технология получения биологически активных веществ» проверяется сформированность у обучающихся компетенций, указанных в разделе 3 настоящей программы. Этапность формирования данных компетенций в процессе освоения образовательной программы определяется последовательным освоением дисциплин и прохождением практик, а в процессе освоения дисциплины - последовательным достижением результатов освоения содержательно связанных между собой разделов, тем.

Таблица 6 - Соответствие разделов, тем дисциплины, результатов обучения по дисци-

плине и оценочных средств

№ п/п	Контролируемые разделы дисциплины	Код контролируемой компетенций)	Наименование оценочного средства
1	Современная биотехнология – одно из основных направлений научнотехнического прогресса	ПК-3	Собеседование
2	Биообъекты - продуценты лечебных, профилактических и диагностических средств. Классификация биообъектов	ПК-3	Собеседование
3	Инженерная энзимология. Иммобилизованные биообъекты в биотехнологическом производстве.	ПК-3	Собеседование
4	Биосинтез. Молекулярные механизмы внутриклеточной регуляции и управление биосинтезом.	ПК-3	Собеседование
5	Биотехнология первичных и вторичных метаболитов	ПК-3	Собеседование

7.2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Таблица 7 - Показатели оценивания результатов обучения в виде знаний

5	- демонстрирует глубокое знание теоретического материала, умение обоснованно
J (OTTHUNO)	излагать свои мысли по обсуждаемым вопросам, способность полно, правильно и
«отлично»	аргументированно отвечать на вопросы, приводить примеры;
4	- демонстрирует знание теоретического материала, его последовательное изложе-
	ние, способность приводить примеры, допускает единичные ошибки, исправляе-
«хорошо»	мые после замечания преподавателя;
3	- демонстрирует неполное, фрагментарное знание теоретического материала, тре-
«удовле-	бующее наводящих вопросов преподавателя, допускает существенные ошибки в
творитель-	его изложении, затрудняется в приведении примеров и формулировке выводов;
но»	
2	- демонстрирует существенные пробелы в знании теоретического материала, не
«неудовле-	способен его изложить и ответить на наводящие вопросы преподавателя, не мо-
творитель-	жет привести примеры.
но»	

Таблица 8 - Показатели оценивания результатов обучения в виде умений и владений

1 11011111111111 0 11101	казатели оценивания результатов обучения в виде умении и владении
Шкала	Критерии оценивания
оценивания	
5	демонстрирует способность применять знание теоретического материала при
J	выполнении заданий, последовательно и правильно выполняет задания, умеет
«ОТЛИЧНО»	обоснованно излагать свои мысли и делать необходимые выводы
	демонстрирует способность применять знание теоретического материала при
4	выполнении заданий, последовательно и правильно выполняет задания, умеет
«хорошо»	обоснованно излагать свои мысли и делать необходимые выводы, допускает
	единичные ошибки, исправляемые после замечания преподавателя
2	демонстрирует отдельные, несистематизированные навыки, неспособен при-
J (ALHORHOTHOPH	менить знание теоретического материала при выполнении заданий, испыты-
«удовлетвори-	вает затруднения и допускает ошибки при выполнении заданий, выполняет
тельно»	задание при подсказке преподавателя, затрудняется в формулировке выводов
2	не способен правильно выполнить задание
«неудовлетво-	
рительно»	

7.3. Контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности.

Примерный комплект заданий для проведения собеседования по учебной дисциплине «Технология получения биологически активных веществ».

Тема 1. Современная биотехнология – одно из основных направлений научнотехнического прогресса.

- 1. Биотехнология как наука и сфера производства. История биотехнологии и этапы ее развития. Эмпирическая биотехнология. Научная биотехнология (работы Пастера). Современная биотехнология (установление структуры ДНК и природы гена).
- 2. Роль биотехнологии в промышленности и сельском хозяйстве. Биотехнология и природные ресурсы. Биотехнология и энергетика. Биогаз. Применение биотехнологических методов в горнодобывающей, и нефтеперерабатывающей промышленности.
- 3. Реализация достижений молекулярной генетики, молекулярной биологии и биоорганической химии в развитии биотехнологии. Химическая технология и биотехнология.
- 4. Комбинирование биосинтеза и органического синтеза при получении и производстве современных лекарств. Биотехнология и новые методы анализа и контроля. Биосенсоры и биодатчики. Новые материалы (биополимеры), получаемые биотехнологическими методами. Биотехнология и интенсификация сельскохозяйственного производства.
- 5. Биотехнология и пищевая промышленность. Совершенствование путей переработки пищевых продуктов. Биодобавки и новые разновидности пищевых продуктов.
- 6. Биотехнология и фармация. Лекарственные средства, витамины, биологические активные добавки производящиеся биотехнологическим путем. Биотехнологическая аппаратура в создании и производстве лекарственных средств. Ферментер. Биореактор.

Тема 2. Биообъекты-продуценты лечебных, профилактических и диагностических средств. Классификация биообъектов.

1. Макрообъекты животного происхождения. «Лестница живых существ». Вирусы. Микроорганизмы-прокариоты (эубактерии, актиномицеты), микроорганизмы-эукариоты (дрожжи, плесневые грибы, водоросли, простейшие), высшие растения, морские беспозвоночные, паукообразные, насекомые, рыбы, амфибии, рептилии, птицы, млекопитающие.

- 2. Основные группы, получаемые с помощью биообъектов биологически активных веществ. Человек как объект иммунизации и донор. Человек как продуцент низко- и высокомолекулярных корректоров гомеостаза. Человек как продуцент иммунопрепаратов. Культура тканей человека и других млекопитающих. Основные группы получаемых биологически активных веществ.
- 3. Биообъекты растительного происхождения. Дикорастущие растения. Культурные растения. Водоросли. Культуры растительных тканей. Основные группы получаемых из растительных объектов биологически активных веществ.
- 4. Биотехнология производства первичных и вторичных метаболитов.(аминокислоты, витамины, антибиотиков (фитонцидов), стероидов). Биообъекты микроорганизмы. Эукариоты (простейшие грибы, дрожжи). Прокариоты (актиномицеты, эубактерии). Вирусы. Основные группы получаемых биологически активных соединений.
- 5. Биообъекты макромолекулы с ферментативной активностью. Биообъекты ферменты, используемые в качестве промышленных биокатализаторов. Промышленные биокатализаторы на основе индивидуальных ферментов и мультиферментных комплексов. Биоконверсия (биотрансформация) при получении гормонов, стероидов, витаминов, антибиотиков и других биологически активных соединений.

Тема 3. Инженерная энзимология. Иммобилизованные биообъекты в биотехнологическом производстве.

- 1. Инженерная энзимология и повышение эффективности биообъектов (индивидуальных ферментов, ферментных комплексов и клеток продуцентов) в условиях производства. Иммобилизованные (на нерастворимых носителях) биообъекты и их многократное использование.
- 2. Нерастворимые носители органической и неорганической природы. Микроструктура носителей. Иммобилизация за счет образования ковалентных связей между ферментом и носителем. Влияние иммобилизации на их субстратный спектр и кинетические характеристики фермента. Иммобилизация ферментов путем включения в ячейки геля.
- 3. Органические и неорганические гели. Микрокапсулирование ферментов как один из способов их иммобилизации. Размеры и состав оболочки микрокапсул.
- 4. Иммобилизация целых клеток микроорганизмов и растений. Моноферментные биокатализаторы на основе целых клеток. Пути повышения проницаемости оболочки у иммобилизуемых клеток, использование ростового цикла для иммобилизации клеток в наиболее продуктивной фазе.
- 5. Проблемы иммобилизации продуцентов при локализации целевого продукта внутри клетки. Пути решения этих проблем.
- 6. Ферменты как промышленные биокатализаторы. Использование иммобилизованных ферментов при производстве полусинтетических β-лактамных антибиотиков, транс-формации стероидов и разделении рацематов аминокислот на стереоизомеры. Создание биокатализаторов второго поколения на основе одновременной иммобилизации проду-центов и ферментов.
- 7. Удаление лактозы из молока с помощью иммобилизованной β-галактозидазы. Превращение глюкозы во фруктозу с помощью иммобилизованной глюкоизомеразы.

Тема 4. Биосинтез. Молекулярные механизмы внутриклеточной регуляции и управление биосинтезом.

- 1. Управление биосинтезом первичных и вторичных метаболитов. Индукция и репрессия синтеза ферментов. Функциональные участки оперона. Механизмы регуляции действия генов и их использование в биотехнологических процессах. Схема Жакоба и Мано.
- 2. Ингибирование активности ферментов по принципу обратной связи (ретроингибирование). Аллостерические ферменты. Значение этого механизма в регуляции жизнедеятельности клетки и пути преодоления ограничений биосинтеза целевых продуктов у суперпродуцентов.

- 3. Создание мутантов с нарушением аллостерического центра у ключевых ферментов биосинтетических путей. Оптимизация подбора сред (среды с уменьшенным содержанием конечных продуктов биосинтетических путей).
- 4. Мутанты с измененной регуляцией азотного метаболизма и возможности интенсификации биосинтеза ряда первичных, вторичных метаболитов и некоторых ферментов. Явление ограниченного протеолиза и возможности его использования. Защита клетки-продуцента от образуемых метаболитов с «суицидным» эффектом.

Тема 5. Биотехнология первичных метаболитов.

- 1. Биотехнология аминокислот. Биологическая роль аминокислот и их применение в качестве лекарственных средств. Химический и химико-энзиматический синтез аминокислот. Проблемы стереоизомерии. Разделение стереоизомеров с использованием ферментативных методов (ацилаз микроорганизмов). Микробиологический синтез аминокислот. Создание суперпродущентов аминокислот.
- 2. Особенности регуляции и схемы синтеза различных аминокислот у разных видов микроорганизмов. Мутанты и генноинженерные штаммы-продуценты аминокислот. Получение аминокислот с помощью иммобилизованных клеток и ферментов. Основные пути регуляции биосинтеза и его интенсификация. Механизмы биосинтеза глутаминовой кислоты, лизина, треонина.
- 3. Биотехнология белковых лекарственных веществ. Биотехнология белковых лекарственных веществ. Рекомбинантные белки, принадлежащие к различным группам физиологически активных веществ. Инсулин. Источники получения. Видовая специфичность. Иммуногенные примеси. Перспективы имплантации клеток, продуцирующих инсулин.
- 4. Создание рекомбинантных белков «второго поколения» на примере инсулина. Интерферон (Интерфероны). Классификация, α-, β-, у- Интерфероны. Интерфероны при вирусных и онкологических заболеваниях. Видоспецифичность интерферонов Ограниченные возможности получения α- и γ-интерферонов из лейкоцитов и Т-лимфоцитов.
- 5. Микробиологический синтез ферментов для медицинских целей. Фармацевтические препарату на основе живых культур микроорганизмов-симбионтов.

Таблица 9 – Примеры оценочных средств с ключами правильных ответов

№ п/п	Тип зада-	Формулировка задания готовить объекты исследования (в	Правильный ответ	Время вы- полнения (в минутах)
		тотовить ообекты исследования (в патериалы и пр.) и проводить их изу		
1.	Задание закрытого	В обмене углеводов участвуют витамины:	А А	3
	типа	А. Тиамин; Б. Ниацин; В. Филлохинон; Г. Фолиевая кислота; Д. Пантотеновая кислота. Обоснуйте свой выбор.		
2.		Витамин Н входит в состав ферментов: А. Транскетолазы; Б. Пируватдекарбоксилазы; В. Пируваткарбоксилазы; Г. Ацетил-КоА-карбоксилазы; Д. Пируватдегидрогеназы.	Γ	3

No	Тип зада-	Формулировка задания	Правильный	Время вы- полнения
п/п	кин	o openymos process and messes	ответ	(в минутах)
3.		В изоэлектрической точке ами-	Б	3
		нокислота:		
		А. Обладает наибольшей степе-		
		нью ионизации;		
		Б. Имеет наименьшую раство-		
		римость;		
		В. Является катионом;		
4.		Г. Является анионом.	Б, В	3
4.		В цикле трикарбоновых кислот декарбоксилированию подвер-	D , D	3
		гаются субстраты:		
		А. Пируват		
		Б. Изоцитрат		
		В. Кетоглатарат		
		Г. Фумарат		
		Д. Цитрат		
5.		Основной функцией цикла три-	В	3
	Задание	карбоновых кислот является		
	комбини-	окисление:		
	рованного	А. Пирувата		
	типа	Б. Ацетата		
		В. Ацетил-КоА		
		Г. Лактата		
6.	Задание	Опишите данный цикл. При формировании структур	Г, Д	4
0.	открытого	При формировании структур нуклеиновых кислот водород-	1,Д	4
	типа	ные связи не возникают между:		
	111114	А. Аденином и тимином;		
		Б. Аденином и урацилом;		
		В. Гуанином и цитозином;		
		Г. Гуанином и аденином;		
		Д. Тимином и урацилом.		
		Обоснуйте свой выбор.		
7.		Какие из указанных аминокис-	Вал – С	4
		лот: валин, лейцин, аспарагино-	Лей – С	
		вая кислота, лизин при электро-	Асп – A	
		форезе при pH = 6.5 будут пере-	Лиз - К	
		мещаться к аноду (A), катоду (К) или останутся на линии		
		старта (С). Вместо многоточия		
		поставьте соответствующие		
		буквы.		
		Валин;		
		Лейцин;		
		Аспарагиновая кислота;		
		Лизин		
8.		В цикле трикарбоновых кислот	Б, В	3
		декарбоксилированию подвер-		
		гаются субстраты:		

№ п/п	Тип зада- ния	Формулировка задания	Правильный ответ	Время вы- полнения (в минутах)
		А. Пируват Б. Изоцитрат В. Кетоглатарат Г. Фумарат		
9.		Д. Цитрат При формировании структур нуклеиновых кислот водородные связи не возникают между: А. Аденином и тимином; Б. Аденином и урацилом; В. Гуанином и цитозином; Г. Гуанином и аденином; Д. Тимином и урацилом. Обоснуйте свой выбор.	Г, Д	4
10.		Согласно правилу комплементарности Чаргаффа водородные связи в молекуле ДНК замыкаются между: А. Аденином и гуанином; Б. Аденином и тимином; В. Урацилом и аденином; Г. Цитозином и тимином; Д. Цитозином и гуанином.	Б, Д	4

Полный комплект оценочных материалов по дисциплине (модулю) (фонд оценочных средств) хранится в электронном виде на кафедре, утверждающей рабочую программу дисциплины (модуля), и в Центре мониторинга и аудита качества обучения.

7.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности.

- 1. История биотехнологии. Определения. Основные разделы биотехнологии. Проблемы и перспективы медицинской биотехнологии.
- 2. Характеристика продуцентов, применяемых в биотехнологических производствах (антибиотики, интерфероны, аминокислоты).
- 3. Основные методы хранения продуцентов, применяемых в фармацевтической промышленности.
- 4. Методы культивирования продуцентов, применяемые в фармацевтической промышленности.
- 5. Особенности культивирования клеток животных, получение вакцин медицинского назначения.
- 6. Кинетические характеристики продуцентов, определяемые в производственных условиях при непрерывном культивировании.
- 7. История генетической инженерии и основные этапы генноинженерных исследований.
- 8. Биотехнология вторичного метаболизма растительных клетоток.
- 9. Получения классических эргоалкалоидов спорыньи биотехнологическими методами. Гормональная регуляция в системе гриб растение.
- 10. Трансгенные растения и перспективы их использования в качестве источника фармацевтических препаратов.
- 11. Особенности образования целевого продукта (биологически активного вещества) популяции продуцента.

- 12. Основные понятия генетической инженерии.
- 13. Клеточная инженерия. Процессы каллусообразования. Тотипотентность растительных клеток.
- 14. Производство дрожжей на углеводсодержащих и целлюлозных субстратах.
- 15. Производство аминокислот медицинского и пищевого назначения.
- 16. Особенности культивирования растительных клеток. Суспензионные культуры.
- 17. Методы получения моноклональных антител. Массовая наработка и их очистка. Основные направления применения.
- 18. Ферменты, применяемые в генноинженерных проектах.
- 19. Источники ДНК для клонирования.
- 20. Химико-ферментативный синтез гена.
- 21. Метод обратной транскрипции.
- 22. Лекарственные препараты, получаемые из культур клеток женьшеня, родиолы розовой, воробейника, стевии, наперстянки, табака и др.
- 23. Векторы, применяемые в генетической инженерии.
- 24. Методы получения рекомбинантных молекул ДНК. Отжиг и лигирование. Соединение тупых концов. Коннекторная техника.
- 25. История развития метода культур клеток. Каллусогенез основа создания пересадочных клеточных культур.
- 26. Культивирование отдельных клеток. Протопласты растительных клеток как объект биологического конструирования. Слияние протопластов и гибридизация соматических клеток.
- 27. Иммуноферментный анализ и его применение.
- 28. Иммобилизованные клетки и их применение в биотехнологии.

Преподаватель, реализующий дисциплину (модуль), в зависимости от уровня подготовленности обучающихся может использовать иные формы, методы контроля и оценочные средства, исходя из конкретной ситуации.

Таблица 10 -Технологическая карта рейтинговых баллов по дисциплине (модулю)

№ п/п	Контролируемые мероприятия	Количество мероприятий / баллы	Максимальное количество баллов	Срок пред- ставления
	Осн	овной блок		
1	Представление отчета по теме «Современная биотехнология - одно из ос-новных направлений научно-технического прогресса ».	1/5	20	по г ра фику
2	Представление отчета по теме «Биообъекты - продуценты лечебных, профилактических и диагностических средств. Классификация биообъектов».	1/5	20	по графику
3	Представление отчета по теме «Инженерная энзимология. Иммобилизованные биообъекты в биотехнологическом производстве».	1/5	20	по графику
4	Представление отчета по теме «Биосинтез. Молекулярные механизмы внутриклеточной регуляции и управление биосинтезом».	1/5	20	по графику
5	Представление отчета по теме	1/5	20	ПО

№ п/п	Контролируемые мероприятия	Количество мероприятий / баллы	Максимальное количество баллов	Срок пред- ставления
	«Биотехнология первичных и вто-			графику
	ричных метаболитов»			
Всего		100		
Блок бонусов				
6	Активность на занятии		5	
7	Своевременное выполнение всех заданий		5	
Всего			10	-
	Дополнительный блок**			
8	Зачет		10 / 50	
Всего		10 / 50	-	
ИТОГО			100	-

Таблица 11 - Система штрафов (для одного занятия)

Показатель	Балл
Опоздание на занятие	-1
Нарушение учебной дисциплины	-1
Неготовность к занятию	-2
Пропуск занятия без уважительной причины	-2

Таблица 12 — Шкала перевода рейтинговых баллов в итоговую оценку за семестр по дисциплине (модулю)

Сумма баллов	Оценка по 4-балльной шкале	
90–100	5 (отлично)	
85–89		
75–84	4 (хорошо)	Zavrzavia
70–74		Зачтено
65–69	2 (удордотроритоду уо)	
60–64	3 (удовлетворительно)	
Ниже 60	2 (неудовлетворительно)	Не зачтено

При реализации дисциплины (модуля) в зависимости от уровня подготовленности обучающихся могут быть использованы иные формы, методы контроля и оценочные средства, исходя из конкретной ситуации.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Основная литература:

1. Колодязная, В. А. Биотехнология : учебник / под ред. Колодязной В. А. , Самотруевой М. А. - Москва : ГЭОТАР-Медиа, 2020. - 384 с. - ISBN 978-5-9704-5436-7. - Текст : электронный // ЭБС "Консультант студента" : [сайт]. - URL :

https://www.studentlibrary.ru/book/ISBN9785970454367.html (ЭБС «Консультант сту-дента»)

2. Орехов, С. Н. Фармацевтическая биотехнология / Орехов С. Н. - Москва : ГЭОТАР-Медиа, 2013. - 384 с. - ISBN 978-5-9704-2499-5. - Текст : электронный // ЭБС "Кон-сультант студента" :

[сайт]. - URL: https://www.studentlibrary.ru/book/ISBN9785970424995.html (ЭБС «Консультант сту-дента»)

8.2. Дополнительная литература:

3. Неверова, О. А. Пищевая биотехнология продуктов из сырья растительного проис-хождения: учебник / О. А. Неверова, Г. А. Гореликова, В. М. Позняковский. Новосибирск: Сибирское университетское издательство, 2007. - 415 с. (Питание) - ISBN 978-5-379-00089-9. - Текст: электронный // ЭБС "Консультант студента": [сайт]. - URL: https://www.studentlibrary.ru/book/ISBN9785379000899.html (ЭБС «Консультант студента»)

8.3. Интернет-ресурсы, необходимые для освоения дисциплины

Электронная библиотека «Астраханский государственный университет» собственной генерации на платформе ЭБС «Электронный Читальный зал — БиблиоТех». <a href="https://biblio.asu.edu.ru/"://HYPERLINK"https://biblio.asu.edu.ru/"biblioHYPERLINK"https://biblio.asu.edu.ru/"asuHYPERLINK"https://biblio.asu.edu.ru/"asuHYPERLINK"https://biblio.asu.edu.ru/"eduHYPERLINK"https://biblio.asu.edu.ru/"eduHYPERLINK"https://biblio.asu.edu.ru/"ru

Vuannuag agnus, oбразованая изого портада 4 ГУ

Yчетная запись образовательного портала $A\Gamma Y$

Электронно-библиотечная система (ЭБС) ООО «Политехресурс» «Консультант студента». Многопрофильный образовательный ресурс «Консультант студента» является электронной библиотечной системой, предоставляющей доступ через сеть Интернет к учебной литературе и дополнительным материалам, приобретенным на основании прямых договоров с правообладателями. Каталог в настоящее время содержит около 15000 наименований.

www.studentlibrary.ru. Регистрация с компьютеров АГУ

Электронная библиотечная система издательства ЮРАЙТ, раздел «Легендарные книги». wwwHYPERLINK "http://www.biblio-online.ru/".HYPERLINK "http://www.biblio-online.ru/"-HYPERLINK "http://www.biblio-online.ru/"-HYPERLINK "http://www.biblio-online.ru/".HYPERLINK "http://www.biblio-online.ru/"ru

<u>Электронная библиотечная система IPRbooks. wwwHYPERLINK</u>
"http://www.iprbookshop.ru/".HYPERLINK "http://www.iprbookshop.ru/"iprbookshopHYPERLINK
"http://www.iprbookshop.ru/".HYPERLINK "http://www.iprbookshop.ru/"ru

Перечень программного обеспечения:

Наименование программного обеспечения	Назначение
Adobe Reader	Программа для просмотра электронных документов
Moodle	Образовательный портал ФГБОУ ВО «АГУ»
Mozilla FireFox	Браузер
Microsoft Office 2013, Microsoft Office Project 2013, Microsoft Office Visio 2013	Пакет офисных программ
7-zip	Архиватор

Microsoft Windows 7 Professional	Операционная система
Kaspersky Endpoint Security	Средство антивирусной защиты
Google Chrome	Браузер
OpenOffice	Пакет офисных программ
Opera	Браузер
Paint .NET	Растровый графический редактор
VLC Player	Медиапроигрыватель

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Занятия проводятся в аудитории, имеющей: Столы -8 шт. Стулья -17 шт. Доска -1 шт. Вытяжной шкаф -1 шт., компьютеры 10 шт.

Рабочая программа дисциплины (модуля) при необходимости может быть адаптирована для обучения (в том числе с применением дистанционных образовательных технологий) лиц с ограниченными возможностями здоровья, инвалидов. Для этого требуется заявление обучающихся, являющихся лицами с ограниченными возможностями здоровья, инвалидами, или их законных представителей и рекомендации психолого-медико-педагогической комиссии. Для инвалидов содержание рабочей программы дисциплины (модуля) может определяться также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).